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Iñigo Martineza,∗, Urtzi Otamendia, Igor G. Olaizolaa, Roger Solsonaa, Mikel Maizaa, Elisabeth Vilesb,c, Arturo Fernandezd,
Ignacio Arzuae

aVicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
bTECNUN School of Engineering, University of Navarra, Donostia-San Sebastián 20018, Spain
cInstitute of Data Science and Artificial Intelligence, University of Navarra, Pamplona 31009, Spain
dPetronor Innovation, Muskiz 48550, Spain
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Abstract

Accurate temperature measurements are essential for the proper monitoring and control of industrial furnaces. However, measure-
ment uncertainty is a risk for such a critical parameter. Certain instrumental and environmental errors must be considered when
using spectral-band radiation thermometry techniques, such as the uncertainty in the emissivity of the target surface, reflected ra-
diation from surrounding objects, or atmospheric absorption and emission, to name a few. Undesired contributions to measured
radiation can be isolated using measurement models, also known as error-correction models. This paper presents a methodology
for budgeting significant sources of error and uncertainty during temperature measurements in a petrochemical furnace scenario. A
continuous monitoring system is also presented, aided by a deep-learning-based measurement correction model, to allow domain
experts to analyze the furnace’s operation in real-time. To validate the proposed system’s functionality, a real-world application case
in a petrochemical plant is presented. The proposed solution demonstrates the viability of precise industrial furnace monitoring,
thereby increasing operational security and improving the efficiency of such energy-intensive systems.

Keywords: radiation thermometry, error analysis, infrared imagery, monitoring system, petrochemical industry, surrogate model,
deep learning

1. Introduction

In crude oil refineries, chemical and petrochemical plants,
heating processes account for up to 85% of the overall energy
consumption, as reported by the U.S. Department of Energy [1].
These processes require almost 95% of the fuel, 65% of the
steam, and 4% of the electricity required for the processes of
separation and chemical conversion of products. Fig. 1a sum-
marizes the energy consumption by end-use in the U.S. petro-
chemical industry.

The furnace is a heat exchanger in which the process fluid
flows through tubes and is heated by radiation from a com-
bustion flame that is generated by oxidizing fuel and by con-
vection from hot combustion gases. Process furnaces provide
a specific amount of heat to the fluid being heated, at high-
temperature levels, without causing localized overheating to the
fluid or structural components.

The energy efficiency of a furnace is critical in terms of
sustainability. Because of the high temperatures and fuel liq-
uids and gases involved, such processes must be continuously
monitored to ensure safety and avoid material and human dam-
ages. Accurate temperature measurements are thus relevant to
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control and monitor the internal temperature of industrial fur-
naces. Measurement uncertainty is a risk for such a critical
parameter. Through appropriate methods, accurate temperature
data acquisition helps in characterizing the temperature distri-
bution inside the furnace. Reliable measurements allow to: a)
predict the Remaining Useful Life (RUL) of furnace tubes, b)
avoid catastrophic failures by managing hot tubes before they
reach a critical state [2] (see Fig. 2), c) optimize online produc-
tion, extending run times, d) prevent unplanned outages and lost
production time and e) make informed decisions about mainte-
nance timing and coordination.

However, acquiring reliable and accurate temperature mea-
surements inside an industrial furnace is a challenging task. The
extreme atmospheric conditions of these furnaces limit the ap-
plicable measurement techniques and make it difficult to obtain
accurate data. See section 2 for a summary of currently avail-
able temperature measurement techniques.

Spectral-band radiation thermometry techniques are most
widely used in such environments [3, 4]. However, there are
certain measurement and environmental errors that need to be
taken into account: the uncertainty in the emissivity of the tar-
get surface, the reflected radiation from surrounding objects, or
the atmospheric absorption and emission, among others [5] (see
Fig. 3 for a visualization of the energy exchange by radiation
on a furnace tube). Undesired contributions to the measured
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(a) (b)

Figure 1: Petrochemical Industry in the USA. a) Energy consumption by end-use, in TBtu (Trillion British thermal unit, 1 BTU = 1055 J). b) Sankey diagram: line
widths indicate the volume of energy that flows to major energy end uses in petrochemical manufacturing and line colors indicate fuel, steam, electricity applied
energy. Figures created from data by the U.S. Department of Energy (DOE) 2015 [1].

radiation are isolated using measurement models, also called
error-correction models.

Error-correction models are generally based on Planck’s Law,
which describes the spectral-energy distribution of radiation G
emitted by a blackbody at a given temperature T . Radiation
thermometry techniques require applying the inverse of Planck’s
Law to infer the temperature of the target surface T from a given
radiation measurement G. Embedding the inverse of Planck’s
Law on error-correction models leads to an unconstrained op-
timization problem, which may be computationally expensive
to solve. This procedure may limit the potential applications of
accurate spectral-band radiation thermometry. To address this
limitation, surrogate models, high-fidelity models, are a poten-
tial solution.

This article introduces a methodology to identify and quan-
tify primary sources of error of spectral-band radiation ther-
mometry in a petrochemical furnace scenario. The result of
such analysis yields an error-correction model that includes the
most critical errors. To integrate this model into a continuous
and real-time monitoring system, we propose a scalable data
architecture solution, and we developed a surrogate model to
speed up the measurement error-correction procedure.

Our main contributions are the following: first, we present
a study of the error and uncertainty in spectral-band radiation
thermometry for petrochemical furnaces. Then, we introduce
four different mathematical models to correct temperature mea-
surements in increasing order of complexity. Second, we in-
tegrate these error-correction models into a continuous moni-
toring system through a deep-learning-based surrogate model.
In addition, we propose a computing architecture with user-
friendly interaction interfaces to enable domain experts to an-
alyze the furnace’s operation in real-time. Finally, we present
a real application case in a petrochemical plant to validate the
proposed system’s functionality.

Figure 2: Damaged and ruptured tubes due to over-heating [5, 6].

The remainder of the article is structured as follows: Sec-
tion §2 provides an overview of temperature measurement meth-
ods. Section §3 presents the error analysis of spectral-band ra-
diation thermometry in a petrochemical furnace. Section §4 in-
troduces the thermal imagery acquisition methodology and the
architectural design of the monitoring system. Finally, section
§5 contains the concluding remarks and outlines some areas for
further research.

2. Thermometry Techniques

Temperature measurement in petrochemical industry fur-
naces is not a straightforward procedure. There are two types of
methods for measuring temperature: contact thermometry and
non-contact thermometry [5, 7]. As the name implies, contact
thermometers require physical contact with the object of inter-
est before a temperature reading can be obtained. This require-
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Figure 3: Energy exchange by radiation on a simplified furnace tube. Legend: G: irradiance [W/m2], T : temperature [K], ε: emissivity, λ: wavelength [µm], α:
absorption. The subscripts s, w and g refer to the tube surface, the furnace wall, and the fuel gas, respectively.

ment constrains the spatial sampling to a single point, whereas
non-contact methods can be performed remotely and provide
dense sampling around the examined area.

Early approaches to measuring temperature in furnaces re-
lied on direct physical contact. There are many contact ther-
mometers available, e.g., liquid-in-glass thermometers, thermis-
tors, and resistance thermometers. Thermocouples [8] are the
most common type of contact thermometer found in industrial
applications [9] and are widely used for various tasks through-
out the petrochemical industry. As a result of the thermoelectric
effect, this electrical device generates a temperature-dependent
voltage, which is then interpreted to determine the temperature.

The applicability of contact sensors is limited due to the
complexity of the wiring and instrumentation. There are two
main issues associated with their use in process tube temper-
ature measurement. The first issue stems from the aggressive
chemical nature of a petrochemical furnace’s fuel gas environ-
ment. Only a few thermocouple types can withstand such ag-
gressive environment, and the thermocouple elements quickly
become contaminated, causing a change in their Seebeck co-
efficient and, as a result, a drift in the measurements [10, 11].
The second issue is that proper thermal contact between the
thermocouple and the process tube is difficult to achieve, espe-
cially considering the high gas flows found in these furnaces.
This can result in potentially significant errors in thermocouple
readings. Furthermore, there are furnaces whose configuration
precludes the use of thermocouples, such as reformer furnaces
with tubes located in the center with no access from a sidewall.

Apart from the limitations inherent to the furnace’s extreme
environment, the thermocouple must be in direct contact with
the measuring point, and the corresponding devices must be
installed near the tubes attached to the furnace walls, which
makes it difficult to pinpoint the exact location of the measur-

ing point. In addition, only the temperature measurement of a
specific point in a tube is obtained, which cannot be extrapo-
lated to the entire tube due to temperature non-uniformity.

Contact thermometry Non-contact thermometry

NPros
Sensor availability
Small sensor size
Low-cost

Wide temp. range
High accuracy
Fast response time
Transient temp.
Continuous monitoring
Interaction-free measurement

HCons

Reduced temp. range Dependence on object’s emissivity
Low accuracy Affected by other radiant sources
Slow response time Measurement in line-of-sight
Interferes monitored process Disturbed by ambient temp.
Influences measured object High-cost
Limited by thermal conductivity

Table 1: Characteristic comparison between average contact and non-contact
infrared thermometry methods.

As a result, early contact-based approaches were dismissed
in favor of non-contact measurement methods (see Table 1 for
a comparison between contact and non-contact methods). Radi-
ation thermometry, a type of non-contact thermometry, avoids
the issues as mentioned earlier [12, 13, 14]. A radiation ther-
mometer detects infrared radiation emitted by an object without
making physical contact with it. Therefore, this instrument can
be placed outside the furnace’s hostile environment; the only
requirement is a clear line of vision to the target tube. The radi-
ation exchange process ensures thermal contact in this case.

When operating from outside the furnace, it is possible to
measure different zones with a unique instrument simply by
moving it around. As a result of this approach, portable devices
such as radiation thermometers [15] were developed. These de-
vices infer temperature from a wavelength range of thermal ra-
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diation and can measure the temperature of an industrial fur-
nace using appropriate optical spatial resolution and infrared
filtering. Due to its portability and operational simplicity, this
method has widely replaced or supplemented thermocouples in
industry.

Despite the performance of these devices, the obtained tem-
perature may be altered and be inaccurate due to peculiar con-
ditions such as distance, target’s emissivity, reflected radiance,
or furnace gas emission. Thus, radiation measurement is sub-
ject to surrounding noise, especially in a harsh and highly ra-
diative environment such as an industrial furnace. As a result,
while radiation thermometers are easy to use, knowledge of ra-
diation phenomena and material physical properties is required
for proper radiation thermometry application [16].

To overcome the mentioned limitations, modulated laser
beams were proposed as a method of measuring the emissivity
of the surface as well as the distance to it. This auxiliary sensor
helps to extract more information from the surroundings and
improves measurement accuracy. However, this method just
obtains the temperature of a specific point in the furnace, and
the beam cannot measure all tubes across the furnace, consid-
ering that it depends on the point of view and the perspective.
Besides, the operator must move the device to obtain the tem-
perature of each tube. The sensor’s manual operation limits
monitoring, making it insufficient to continuously monitor an
entire industrial furnace.

In contrast to these approaches, novel non-contact ther-
mal mapping techniques have been proposed for continuous
monitoring. These methods employ an imaging radiometer to
generate a thermal image of the furnace’s interior. By measur-
ing the radiation emitted by each point, the operator can obtain
an image of the thermal distribution inside the furnace. Still,
the large quantities of combustion gases inside the furnace may
distort the measurements and generate noise due to the amount
of infrared radiation. Edwards et al. [17] found that at a wave-
length of 3.90µm, there was a void in the emission spectrum
of these combustion gases. Hence, in the presence of hot com-
bustion gases, a narrow band-pass interference filter centered at
such wavelength can be used to obtain a precise temperature im-
age of the furnace [5]. This thermal mapping approach requires
the sensor to use cryogenic cooling to measure the temperature
inside the furnace. As an alternative, Uncooled focal plane ar-
ray (UFPA) sensors were introduced to the market [18, 19].

3. Error and Uncertainty Analysis

Although many infrared (IR) thermometry applications do
not require knowledge of temperature measurement accuracy,
some do, for instance, high radiation environments such as fur-
naces in the petrochemical industry. The high precision require-
ments of these furnaces need correction methods to overcome
the limitations mentioned above. For such applications, a sys-
tematic method should be used to determine its accuracy.

For temperature measurements, accuracy is the ”closeness
of agreement between the result of a temperature measurement
and a true value of the temperature” [20]. An accepted method
of determining measurement accuracy is to create an error and

uncertainty analysis, which provides accurate data for a given
measurement.

The analysis presented in this section follows the guideline
defined in the Guide to the Expression of Uncertainty in Mea-
surement, commonly referred to as the GUM [21], that estab-
lishes general rules for evaluating and expressing uncertainty
in measurements. First, the primary sources of uncertainty are
identified (§3.1), and the temperature measurement is modeled
with a spectral-band radiation thermometry measurement inte-
gral equation (§3.2). Then, a sensitivity analysis is carried out
for each model parameter (§3.3). Each parameter is succes-
sively perturbed from its nominal value, while the remaining
parameters stay unchanged at their nominal values, and the dif-
ference in the temperature is measured. With this procedure,
one can analyze how a perturbation (error) in a parameter prop-
agates to the measured temperature. In addition, by repeating
the error perturbation for a range of temperatures, one can ex-
amine the effect of a distribution of errors, or uncertainty, in an
input parameter.

3.1. Sources of error
Radiation thermometers have many sources of error that

must be considered to establish a high level of confidence in
their measurement. A comprehensive overview of these errors
applied to a petrochemical furnace is given by Saunders [5],
who categorizes the errors into two groups: those associated
with the instrument itself and those related to the target and its
surroundings (environmental). The most important errors for
industrial applications are related to the target and its surround-
ings. Nevertheless, section 4 also addresses errors related to
instrument uncertainty, such as instrument stability or temporal
variation.

In a petrochemical furnace, there are numerous sources of
uncertainties that could be considered when assembling an un-
certainty budget for radiation thermometry, e.g., target emissiv-
ity, reflection (background temperature), absorption and emis-
sion (atmospheric losses), spectral response, errors due to flames,
scattering errors, size-of-source effect, vignetting, ambient tem-
perature, signal linearization, calibration, stability (long term
drift), uniformity, noise, readout resolution, among others.

Among these sources of uncertainty, in this article only the
most relevant are studied, which are associated with the largest
errors [5, 22, 23, 24]:

1. Emissivity error: uncertainty in the target’s emissivity
parameter.

2. Reflection error: unknown background radiation reflected
from the target and detected by the thermometer.

3. Absorption and emission error: caused by the atmo-
spheric (fuel gas) attenuation of the radiation between the
target and the thermometer.

4. Spectral variation: uncertainty in sensor’s wavelength
parameter.

Note that in many cases, the effects of atmospheric attenu-
ation and background radiation either are negligible or can be
minimized by proper shielding of radiation or choice of wave-
lengths. Nevertheless, in this work, the absorption and emission
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errors were considered as a relative baseline of the uncertainty
introduced in the temperature measurement by these errors.

To quantify the influence of each uncertainty source on tem-
perature accuracy, a measurement model must be defined. In
the subsequent section, four different measurement models are
introduced, in increasing order of complexity, to account for the
errors listed above.

3.2. Measurement Models

The measurement equation used in these error and uncer-
tainty analysis is derived from Planck’s Law. Table 2 summa-
rizes the variables used by each model.

Model λ ε Tw α Tg

A: Blackbody X
B: Selective Radiator (SR) X X
C: SR + Reflections X X X
D: SR + Reflections + Gas X X X X X

Table 2: Variables included in each model. Legend: λ: wavelength, ε: emissiv-
ity, Tw: furnace walls temperature, α: gas absorption, Tg: fuel gas temperature

3.2.1. Model A: Blackbody
The signal S measured by the monochromatic radiation ther-

mometer is proportional to the blackbody spectral radiance Lb

modeled by Planck’s Law:

Lb(λ,T ) =
c1L

λ5
(
exp

( c2

λT

)
− 1

) (1)

where λ refers to the wavelength (usually measured in µm),
c1L = 2hc2 is referred as the first radiation constant and c2 =

hc/kB as the second radiation constant.
Note that h = 6.62607015 10−34Js is the Planck constant, kB =

1.380649 10−23JK−1 is the Boltzmann constant, and c is the
speed of light in the medium (c0 = 299792458m/s).

One alternative to Planck’s Equation is the Sakuma-Hattori
equation [5], which has been suggested as a measurement equa-
tion for radiation thermometry error and uncertainty analysis
[22]:

S =
C

exp
( c2

A + BT

) (2)

In this paper, the Sakuma-Hattori equation will not be used
because of the dynamic nature of the thermometer spectral re-
sponse and due to furnace’s operating temperature above the
silver point (962°C).

In a spectral-band radiation thermometer, the relationship
between the thermometer output signal S (T ) and the blackbody
temperature T is given by the integral over all wavelengths of
the product of the spectral power imaged onto the detector and
its spectral responsivity.

S (T ) =

∫ ∞

0
R(λ) · Lb(λ,T ) dλ (3)

where R(λ) is the thermometer’s absolute spectral respon-
sivity. In case the spectral responsivity is limited to a range, the
integral is defined over the interval [λ1, λ2]:

S (T ) =

∫ λ2

λ1

R(λ) · Lb(λ,Ts) dλ (4)

Equation 4 defines measurement model A, and it serves as
the foundation for all three subsequent models. This model as-
sumes an isolated blackbody tube with surface temperature Ts,
with no reflections or interactions with other objects. Inferring
the temperature of the target surface Ts using equation 4 re-
quires solving an unconstrained optimization problem.

3.2.2. Model B: Selective Radiator
Model B is an extension on Model A that considers an iso-

lated, opaque, diffuse, and selective radiator body with emissiv-
ity ε(λ), which is a function of the wavelength λ.

S (T ) =

∫ λ2

λ1

ε(λ) · R(λ) · Lb(λ,Ts) dλ (5)

3.2.3. Model C: Selective Radiator + Reflections
In a steam reformer, the tubes are usually the coldest ob-

jects, with the walls, floor, and ceiling measuring as much as
300 to 400°C higher. Therefore, errors due to reflected radia-
tion make the thermometer report a higher temperature than the
actual value.

Model C extends Model B and takes into account surround-
ing bodies and their temperature in the measurement equation.
In this case, the infrared signal received by the thermometer
from the tube is the summation of the radiation emitted by the
tube, and the radiation reflected off the tube that originated from
other surrounding objects (furnace walls): Gsensor = Gemit +

Gre f lect.

S (T ) =

∫ λ2

λ1

ε(λ) · R(λ) · Lb(λ,Ts) dλ +∫ λ2

λ1

(1 − ε(λ)) · R(λ) · Lb(λ,Tw) dλ
(6)

In equation 6, the signal S for the measured temperature T
depends on the effective background temperature Tw, the true
temperature of the tube being measured (Ts) and its emissivity
ε. Bodies are assumed to be opaque, diffuse, and selective radi-
ators. By the energy balance at the body surface, light must be
absorbed, reflected or transmitted: ε + ρ + τ = 1, where ρ is the
reflectance and τ the transmittance. Thus, considering that the
transmittance τ of an opaque body in equilibrium is zero, the
emissivity and the reflectance are complementary (ρ + ε = 1).
Note that in this model, the emissivity is not considered a func-
tion of the incidence angle. The effective background temper-
ature Tw is equal to a weighted average of the temperatures of
all of the surrounding objects that can be seen by the tube.
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3.2.4. Model D: Selective Radiator + Reflections + Gas Ab-
sorption

Fig. 4 shows a simplified geometry of a refinery furnace,
consisting of a unique tube at surface temperature Ts and with
surface emissivity ε with uniform wall temperature Tw. The
atmosphere inside the furnace is modelled with a gas at uniform
temperature Tg, absorption coefficient α and a distance to the
target surface l. Note that both emissivity and the absorption
coefficient are a function of the wavelength λ: ε(λ), α(λ).

S (T ) =

∫ λ2

λ1

(1 − l · α(λ)) · ε(λ) · R(λ) · Lb(λ,Ts) dλ +∫ λ2

λ1

(1 − l · α(λ)) · (1 − ε(λ)) · R(λ) · Lb(λ,Tw) dλ +∫ λ2

λ1

α(λ) · R(λ) · Lb(λ,Tg) dλ

(7)

Under this assumption, the infrared signal received by the
thermometer from the tube wall is a summation of the radia-
tion emitted by the tube and the radiation reflected off the tube
that originated from other surrounding objects. This summa-
tion is then attenuated by the gases present in the furnace’s at-
mosphere. Since the thermometer cannot differentiate between
these sources, the resulting temperature measurement has er-
rors that depend primarily on the ratio of emitted radiation to
reflected radiation. The irradiance G contributions represented
in Fig. 4 can be defined as:

Gwall ∝ Lb(λ,Tw) (8)
Gre f lect ∝ (1 − ε(λ)) ·Gwall (9)
G′re f lect ∝ (1 − l · α(λ)) ·Gre f lect (10)

Gemit ∝ (1 − ε(λ)) · Lb(λ,Ts) (11)
G′emit ∝ (1 − l · α(λ)) ·Gemit (12)
Ggas ∝ l · α(λ) · Lb(λ,Tg) (13)

Gsensor ∝ G′emit + G′re f lect + Ggas (14)

3.3. Sensitivity Analysis
In this section, a parameter sensitivity analysis is conducted

for measurement models B, C, and D. Sensitivity analysis is
the study of how the uncertainty in the output of a model can
be apportioned to different sources of uncertainty in the model
input [25].

Table 3 shows the parameters for the sensitivity analysis,
with their nominal value, range, and units of measure. The
nominal and range values are chosen based on a typical steam
reformer’s operating conditions. It should be noted that not all
parameters apply to all the models (see Table 2). The sensitiv-
ity analysis is performed in the following manner: each param-
eter is successively perturbed from its nominal value, while the
remaining parameters stay unchanged at their nominal values.
Then, the difference in the tube temperature ∆Tnom is measured.

Tw
Furnace Walls

Tg, α(λ)

Gas

Ts, ε(λ)

Tube

Sensor λ

Gwall

Gre f lect
G′re f lect

Gemit
G′emit

Ggas

Figure 4: Geometry of the furnace and radiation sources included in model D.

This procedure is also repeated for a variety of tube temperature
values to examine its effect on the measured difference ∆Tnom.
Graphical results of this analysis are included on Appendix A.

Parameter Description Nominal value Range Unit

λ Wavelength 3.95 3.7 - 4.2 µm
ε Emissivity 0.82 0.72 - 0.92 -
α Absorption 0.05 0.0 - 0.1 -
Tw Wall temperature 1105 1030 - 1180 °C
Tg Gas temperature 980 880 - 1080 °C
Ts Tube temperature 950 880 - 1030 °C

Table 3: Parameter sensitivity analysis: nominal value, range and units.

Figs. A.11, A.12, and A.13 depict the results of the sensi-
tivity analysis for models B, C and D respectively. Regarding
model B, Fig. A.11a illustrates the influence of the wavelength
λ on the measured tube temperature Ts. A dotted vertical line
is drawn at the nominal value, in this case, 3.95 µm. The per-
turbed parameter is located on the x-axis, and the difference in
the measured tube temperature ∆Tnom is plotted on the y-axis.
Each line is associated with a nominal tube temperature value.
In this case, Fig. A.11a shows that there is a positive correla-
tion between a change in the wavelength parameter and the tube
temperature, but the effect of that change is small (between -5
and 5 °C) for the operating temperature of the furnace.

Continuing with model B, Fig. A.11b shows a strong nega-
tive correlation between a perturbation in the emissivity param-
eter and the tube temperature that varies heavily (between -50
and 60 °C). Therefore, the emissivity parameter has a greater
influence than the wavelength parameter (∼ x10 ratio), based
on measurement model B. In order to facilitate the comparison
of the influence of the model parameters, Fig. A.14a shows a
different perspective of this statement. In this case, the nom-
inal tube temperature Ts is plotted on the x-axis and the un-
certainty unom of the y-axis. The uncertainty unom is defined as
the maximum absolute difference in temperature ∆Tnom when a
parameter is perturbed from its nominal value. Apart from the
uncertainty introduced by each parameter, the combined uncer-
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tainty uc has also been included. Uncertainties add in quadra-

ture uc =

√∑
i u2

i . The expanded uncertainty U can be cal-
culated as the product of the combined uncertainty uc and the

coverage factor k: U = k · uc = k ·
√∑

i u2
i . A 95% confidence

interval is established with a coverage factor of k = 1.96. Ex-
panded uncertainty is excluded from figures A.14a, A.14b and
A.14c due to its disproportionate scale.

In the case of Model B (see Fig. A.14a) the total uncertainty
is almost entirely due to the emissivity parameter. Similar anal-
yses have been carried out for measurement models C and D.
Concerning model C there is a slight positive correlation with
the wavelength λ, a strongly positive one with the emissivity ε
and a strong negative correlation with the wall temperature Tw

(see Fig. A.12). Note how the difference in temperature ∆Tnom

due to the emissivity ε approaches zero as the tube temperature
Ts and wall temperature Tw get closer (see Fig. A.14b). Ac-
cording to model C, the emissivity is neutralized when both the
tubes and the walls have the same temperature. For measure-
ment model D, a comparative analysis can be performed (see
Fig. A.13): both the wavelength λ, the fuel gas temperature Tg

and its absorption coefficient α have a small influence (< 10°C)
on the measured tube temperature, relative to the effect of the
emissivity ε and the wall temperature Tw (∼ 20-40°C). These
results support the findings of other authors [5, 22, 26, 24], who
concluded that the effects of atmospheric attenuation are negli-
gible.

In this section, a parameter sensitivity analysis has been per-
formed for multiple measurement models, yielding the impact
of each model parameter on the output temperature. Based on
the selected model, refinery furnace operators can be informed
about the uncertainty in the measured temperature. It should be
noted that this procedure can be extended to other, more com-
plex thermometry models.

4. Monitoring System

In this section, the system for continuous monitoring of in-
dustrial furnaces is introduced. The measurement correction
methodology is integrated into the thermal imagery acquisition
system, designed with an end-to-end computing architecture,
and handles everything from thermal imagery acquisition to
analysis.

4.1. Thermal imagery acquisition

In this work, a camera with an amorphous silicon microbolome-
ter focal plane array (FPA) infrared sensor was used. FPA sen-
sors are widely used [27, 28, 29] and have proven to be a sig-
nificant advance in radiometric imagery in hot atmospheres.
Performance and cost factors were considered to decide where
to place the camera in the furnace. Installing a camera inside
industrial furnaces is both costly in terms of maintenance and
complicated in terms of operation and installation.

To overcome such limitations, we used a radiometric in-
frared borescope camera [30]. A borescope is an optical instru-
ment used to inspect narrow and difficult-to-reach cavity areas

Figure 5: FTI-Eb Borescope thermal imaging camera’s diagram [30].

(see Fig. 5). This instrument allows the infrared camera to
be placed outside the furnace and introduces the borescope to
acquire the image. In order to ensure equipment safety and cor-
rect operation performance during the continuous monitoring,
a water-cooled rugged housing keeps it at operating tempera-
ture. Furthermore, the camera employs non-uniformity correc-
tion (NUC) to compensate for minor detector drift caused by
the instrument’s heating.

The borescope can be inserted through mounting openings
in the furnace walls. These holes are coated with a mounting
standpipe. This high-temperature-resistant tube allows the cam-
era to be inserted in the right direction and position, ensuring
consistency between different captures. The camera was also
mounted and anchored to a flange attached to the standpipe. In
this manner, the camera position is guaranteed to be constant,
even when temporarily removed.

The mounting standpipe does not penetrate the wall, pre-
venting overheating and unnecessary exposure to the environ-
ment. The borescope exceeds the extension of the standpipe at
its end, avoiding interference of the standpipe during the image
capture, i.e., by reflections. Furthermore, the standpipe being
shorter than the wall width allows sealing the hole using a ce-
ramic plug. In this manner, when the camera is not in operation,
the furnace does not suffer any heat losses.

4.2. Surrogate model

Spectral radiation thermometers typically include a look-
up table built into the data acquisition module. These look-up
tables are limited to elementary models, such as the inverse of
Planck’s law, which assumes a blackbody object and ignores
major environmental errors. A potential alternative to look-up
tables is surrogate models, which are statistical approximations
of high-fidelity models.

Combining both flexibility and accuracy, we propose deep
learning-based surrogate models for fast inference in radiation
thermometry error-correction models. Measurement model D
(MD, from equation 7) is selected as the underlying model,
as it considers multiple environmental errors. Model MD es-
timates the temperature of a tube at temperature Ts, measured
by a sensor with spectral responsivity R(λ), given wall tem-
perature Tw, fuel gas temperature Tg and properties ε(λ) and
α(λ). Each parameter is defined over a range of values, as
summarized on Table 4. Note that the functional form of both
ε(λ) and α(λ) follow a bell-shaped function parametrized by
its mean value µ, deviation σ and height or maximum value h:
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f (λ) = h · exp(−(λ−µ)2/(2σ2)), as illustrated on Fig. 6 and Ta-
ble 4. Depending on the scenario, parameter search ranges can
be freely modified, and models can be retrained and adapted to
new domains.
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Figure 6: Functional form of the emissivity ε(λ) and the gas absorption α(λ),
parametrized by the mean value µ, deviation σ and height or maximum value
h.

Parameter Description Range Unit

Ts Tube temperature 800 - 1200 °C
Tw Wall temperature 800 - 1300 °C
Tg Gas temperature 500 - 1000 °C
hε Emissivity height 0.65 - 0.95 −

µε Emissivity’s wavelength mean 3.3 - 4.6 µm
σε Emissivity’s wavelength deviation 0.2 - 1.8 µm
hα Gas absorption height 0.0 - 0.2 −

µα Gas absorption’s wavelength mean 3.3 - 4.6 µm
σα Gas absorption’s wavelength deviation 0.2 - 1.8 µm

Table 4: Model D input variables description, search range and units.

Measurement Model

Surrogate Model

Tw, Tg

ε(λ), α(λ)

Tw, Tg

ε(λ), α(λ)

Ts S

Figure 7: Measurement and surrogate model: input and output parameters.
Legend: λ: wavelength, ε: emissivity, α: gas absorption, Tw: furnace walls
temperature, Tg: fuel gas temperature, Ts: tube temperature, S : measured radi-
ation

The surrogate model has to learn the inverse function, that
is, estimating the tube temperature Ts (output) from the mea-
sured radiation (input), given the parameters Tw, Tg, ε(λ), and
α(λ) (see Fig. 7). Due to the high accuracy in complex re-
gression tasks, Deep Neural Networks (DNN) are proposed.
In this regard, to choose the most effective DNN topologies,
an experiment is conducted in which 3500 topologies are cre-
ated. Among all these topologies, we have selected the best-
performing model.

The model’s topology is shown in Table 5. 3500 random
DNN topologies were evaluated in order to select the most ef-
fective combination of layers and neurons. The neural net-

Layer Neurons Activation # Parameters

Input 9 - -
Dense 96 ReLu [31] 864
Dense 125 ReLu 12000
Output 1 Linear 125

Total 231 - 12989

Table 5: Surrogate deep neural network model’s topology.

work layers are fully connected and without bias. The model
was trained for 200 epochs using the Adam optimization algo-
rithm [32], with a learning rate of 0.001 and Mean Square Error
(RMSerror) as loss function. After the training, the model was
validated with one million data samples. Experiments were run
on an Intel i5-9400F processor with six threads at 2.90 GHz
and 16 GB of RAM. The model performed accurately, obtain-
ing an RMSerror of 0.1511°C and an inference time of 42.19
ms. On the contrary, solving the optimization problem with the
bisection method (scipy) took 324.3 ms.

Considering the obtained results, it can be stated that DNN
models can be used as a surrogate model of the measurement
model MD defined on section 3. In comparison with the under-
lying physical model MD, the inference speed improvement is
nearly x10. This enables efficient measurement correction of ra-
diation thermometry imagery in a variety of industrial furnaces.
The proposed DNN topology’s lightness makes it easier to re-
train models and tune the parameters to improve performance
in other conditions (e.g., spectral responsivity of the sensor, gas
temperature range).

Furthermore, by using this technique the expert user is able
to change model’s inputs in real time, providing accurate emis-
sivity [33] or gas absorption data for each area or point of the
furnace. Thus, the accuracy of the model is complemented by
its adaptability to new data.

4.3. Architecture
The thermal imaging procedure requires an architecture to

coordinate data acquisition, management, and exploitation. In
this section we present a computing architecture for integrating
the presented monitoring system.

The proposed architecture is able to manage several ther-
mal cameras located throughout an industrial plant. Performing
multiple data acquisition processes and analyzing the data in
the same computational unit can cause infrastructure conges-
tion. As a result, the architecture was separated into edge- and
cloud-computing units, as illustrated in Fig. 8.

Data is collected and processed at the edge computing unit
before being ingested into the cloud-computing platform. Data
acquisition is performed in an industrial furnace, using above
stated methodology. In this regard, a custom software tool was
designed to improve the camera’s acquisition procedure and en-
hance the data quality of the thermal images. The tool serves
as an orchestration system, controlling the multiple cameras in-
stalled in the plant. In this sense, every camera has its cor-
responding instance in the capture process that is triggered si-
multaneously. Technically image capture is performed asyn-
chronously, which does not affect the measurement accuracy

8



Figure 8: Monitoring system architecture. The edge-computing unit (left side) is composed of the image acquisition process which is performed in the furnace,
and the image management process, performed in the plant’s data center. The cloud-computing unit (right side), is composed of the data processing process
which is performed in a cloud server, and data analytic platform, accessible for the domain expert.

Figure 9: Thermal image of the furnace: selection of different regions of
interest on the tubes, using points, lines and polygons.

given that the capture delay is less than half a second and the
thermal inertia in an industrial furnace is very low.

The cameras are connected to the plant’s data center via a
gateway. This data center manages the camera network and
orchestrates data acquisition in each furnace at the same time.
The collected data is then managed by a local short-term stor-
age system before being uploaded to the cloud platform via a
queuing system.

After the data is uploaded to the cloud-computing unit, it is
processed in order to be accessible to the domain expert users.
At this stage, a batch processing service generates and extracts
information from the uploaded data. In this service, data is pro-
cessed to obtain time-series instances and aggregated thermal
mapping data. Subsequently, this data is stored in a long-term
storage service, which can be accessed and managed via the

Figure 10: Selection tool: visualization of the measurements made in the
geometric areas selected by the user at Fig. 9.

web platform. At last, data serving is handled by a query en-
gine, which optimizes data requests in order to manage com-
puting resources efficiently. For the streaming functionality, a
real-time data serving service is provided.

Finally, in the web platform, the domain expert user will
access the analytical services, in order to explore and exploit the
acquired data. This service includes the previously mentioned
surrogate models, which correct the data in real time based on
the emissivity ε and gas absorption α inputs provided by the
domain expert. These inputs can be inserted for each point of
the image, using a mask to assign values.

In addition, the web platform includes an interactive dash-
board with analytical tools focusing on time series and machine
learning techniques. With these tools, domain experts can de-
tect furnace anomalies and generate an automated report.
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4.4. Real scenario integration
The architecture presented here has been integrated into the

infrastructure of a petrochemical refinery at various stages of
the refinery process, with cameras installed in several units.
With that, the functioning of the system has been validated in a
real scenario.

The selection tool, one of many tools available in the web
interface, is now introduced as an example. Domain experts
can use the selection tool to select regions of interest in the
tubes by adding points, lines, and polygons (see Fig. 9). The
application then displays a plot with selected geometry areas’
measurements (see Fig. 10 for an example of measurements
along two lines and inside two polygons defined by the user).
Depending on the type of geometry the plot represents differ-
ent information: a) Point: mean value and standard deviation
within one-pixel of the selected point. b) Line: ordered value at
every pixel that intersects with the drawn line. c) Polygon: the
distribution of measurement values within the drawn polygonal
area. This information is useful to analyze the evolution of the
performance and temperature distribution in the furnace. Using
this tool, the expert can monitor what is happening inside the
furnace and make decisions to avoid potential failures or power
outages.

5. Conclusions

In this paper, a methodology for budgeting the major sources
of error and uncertainty during temperature measurements in a
petrochemical furnace scenario has been presented. The contri-
bution of each main source of error has been quantified for three
different measurement models. This procedure, however, can
be extended to more complex mathematical models that include
other environmental effects. Based on the selected model, re-
finery furnace operators can be informed about the uncertainty
in the measured temperature, which is a valuable information
for improving furnace control and monitoring.

The measurement model has been integrated into a com-
plete solution for continuous monitoring of industrial furnaces.
This solution manages the acquisition of thermal imagery, using
multiple borescope cameras introduced into the furnace and an-
chored to the wall structure via of flanges and standpipes. In ad-
dition, using an end-to-end computing architecture the system
is capable to orchestrate data acquisition, processing and anal-
ysis. In this sense, using light-weight deep neural network, the
systems replicates the complex radiation thermometry measure-
ment model with high precision, yielding an inference speed
improvement of nearly x10. This enables efficient and accurate
measurement of radiation thermometry imagery in a variety of
petrochemical industry furnaces. In addition, the accuracy of
the model is enhanced by its adaptability to new data, as expert
users can change the model’s inputs in real time. Furthermore,
domain expert users are able to monitor the furnace’s operation
using user-friendly interaction interfaces that provide analytical
tools to investigate and analyze the performance.

A real-world application case in a petrochemical plant was
presented to validate the proposed system’s functionality, demon-
strating that the proposed monitoring strategy is more than just

a theoretical-conceptual framework. The system’s deployment
in a real-world petrochemical plant has contributed to a better
understanding of the approach’s potential limitations and instal-
lation challenges.

Overall, the proposed solution demonstrates the viability of
precise industrial furnace monitoring, thereby increasing oper-
ational security and improving the efficiency of such energy-
intensive systems.
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(a) Wavelength λ influence on measured temperature Ts (b) Emissivity ε influence on measured temperature Ts

Figure A.11: Model B sensitivity analysis: influence of model parameters (λ, ε) on the tube measured temperature. Nominal values: λ = 3.95µm, ε = 0.82. Each
line represents a different nominal temperature Ts = [880, 910, 940, 970, 1000, 1030] °C

(a) Wavelength λ influence on measured temperature Ts (b) Emissivity ε influence on measured temperature Ts

(c) Wall temperature Tw influence on measured temperature Ts

Figure A.12: Model C sensitivity analysis: influence of model parameters (λ, ε, Tw) on the tube measured temperature. Nominal values: λ = 3.95µm, ε = 0.82,
Tw = 1105°C. Each line represents a different nominal temperature Ts = [880, 910, 940, 970, 1000, 1030] °C
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(a) Wavelength λ influence on measured temperature Ts (b) Emissivity ε influence on measured temperature Ts

(c) Wall temperature Tw influence on measured temperature Ts (d) Fuel gas absorption α influence on measured temperature Ts

(e) Fuel gas temp. Tw influence on measured temperature Ts

Figure A.13: Model D sensitivity analysis: influence of model parameters (λ, ε, Tw, α, Tg) on the tube measured temperature. Nominal values: λ = 3.95µm,
ε = 0.82, Tw = 1105°C, α = 0.1, Tg = 980°C. Each line represents a different nominal temperature Ts = [880, 910, 940, 970, 1000, 1030] °C
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(a) Model B uncertainty analysis: influence of parameters (λ, ε) (b) Model C uncertainty analysis: influence of parameters (λ, ε,
Tw)

(c) Model D uncertainty analysis: influence of parameters (λ, ε,
Tw, α, Tg)

Figure A.14: Uncertainty analysis: influence of model parameters (λ, ε, Tw, α, Tg) on the tube measured temperature uncertainty unom. Uncertainties add in

quadrature to compute the combined uncertainty: uc =

√∑
i u2

i . Expanded uncertainty U = k · uc is excluded due to its disproportionate scale (k = 1.96).
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