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Abstract

In the operation & maintenance (O&M) of photovoltaic (PV) plants, the early identification of failures has become crucial to
maintain productivity and prolong components’ life. Of all defects, cell-level anomalies can lead to serious failures and may affect
surrounding PV modules in the long run. These fine defects are usually captured with high spatial resolution electroluminescence
(EL) imaging. The difficulty of acquiring such images has limited the availability of data. For this work, multiple data resources
and augmentation techniques have been used to surpass this limitation. Current state-of-the-art detection methods extract barely
low-level information from individual PV cell images, and their performance is conditioned by the available training data. In
this article, we propose an end-to-end deep learning pipeline that detects, locates and segments cell-level anomalies from entire
photovoltaic modules via EL images. The proposed modular pipeline combines three deep learning techniques: 1. object detection
(modified Faster-RNN), 2. image classification (EfficientNet) and 3. weakly supervised segmentation (autoencoder). The modular
nature of the pipeline allows to upgrade the deep learning models to the further improvements in the state-of-the-art and also extend
the pipeline towards new functionalities.

Keywords: electroluminescence images, photovoltaic modules, deep learning, anomaly detection, weakly supervised
segmentation, deep autoencoder

1. Introduction

Solar energy has dominated the expansion of renewable en-
ergy capacity in recent years. The installation of photovoltaic
energy has increased since 2010, when manufacturing prices
started to decrease, driving more than 110 countries to invest
in solar energy (IEA, 2019b). As a result, record-level PV ca-
pacity growth has been headlining renewable energy news over
the last years. Recent studies assert that the capacity of pho-
tovoltaic solar energy surpassed 627 GW in 2019 (IEA-PVPS,
2020), and the IEA’s latest 5-year forecast shows that the total
capacity will reach 1209 GW in 2024 (IEA, 2019a).

Besides, the photovoltaic services market of O&M and in-
stallations is estimated to grow by 10.81 billion dollars during
the period 2019-2023, which represents a growth of 16% per
year (Wire, 2019). In this regard, the digitization of O&M is
presumed to reduce the costs while boosting the performance
of PV installations. The early identification of panel failures
and deterioration is crucial to avoid a reduction in production
efficiency (productivity) and prolong the life of the components
(Grunow et al., 2005; van Mölken et al., 2012).

A photovoltaic (PV) panel can have different types of
anomalies depending on the element it affects and the loss of
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productivity it causes. Major anomalies such as panel degrada-
tion, electrical disconnection or hot spots, cause heat emission
under abnormal functioning, and thus the damaged areas can
be easily revealed using infrared imagery (IR). On the other
hand, cell level anomalies – such as material defects, fingerprint
marks, micro-cracks or electrically isolated parts (Anwar and
Abdullah, 2014; , IEC) – may not directly affect the function-
ing of the panel but in the long run may lead to the appearance
of serious failures (Köntges et al., 2011, 2010), also affecting
surrounding PV modules (Tur et al., 2018).

Cell level anomalies cause slight temperature differences
between non-defective and defective areas. Various studies
(Rigutti and Tchernycheva, 2013; , IEC; Deitsch et al., 2019)
have shown that these types of anomalies are harder to detect
using optical or infrared imagery, so electroluminescence (EL)
imaging is used instead. The operation of a PV cell is to absorb
light and convert it into electricity. The reciprocity principle
allows the opposite, that is, applying a direct current into the
PV module and measuring the infrared photoemission with a
special camera configuration (Buerhop-Lutz et al., 2018). EL
imaging provides insight into micro-cracks and other defects
within the cell material, a pivotal information for O&M. The
emitted light has a peak wavelength of 1150nm (Fuyuki et al.,
2005), which is very appropriate to reveal the most slight and
subtle anomalies.

In this sense, anomaly segmentation techniques are able to
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Figure 1: Workflow of the proposed segmentation architecture, from the input EL image to the output segmented image, through the four processing modules. The
images on the left represent (from top to bottom): 0. Original EL module; 1. Bounding box of each cell (blue); 2. Classification of each cell as non-defective (green)
or defective (red); 3. Segmentation of the defective zones (red)

detect and locate with precision the conflicting elements in an
image. The process of partitioning an image into multiple seg-
ments (sets of pixels) requires a high-level of comprehension of
the domain and image itself. In this regard, a number of recent
contributions in the field of anomaly segmentation in images
have used deep learning techniques. Deep learning models are
able to learn and recognize complex and abstract patterns in im-
ages like no other machine learning model (Lecun et al., 2015;
Litjens et al., 2017). Due to the capacity of these models to
exploit such abstract patterns, their performance on the task of
anomaly segmentation is currently state-of-the-art (He et al.,
2016; Long et al., 2015).

Even though research is being conducted to detect irregu-
larities in PV panels using conventional machine learning tech-
niques, there is a lack of methods that extract high-level features
such as anomaly shape, contour, or semantically meaningful in-

formation. Hence, in this article a deep-learning pipeline is pro-
posed to detect, locate and segment cell level anomalies from
images of photovoltaic modules (see Figure 1). To the best of
our knowledge, this is the first work proposing a complete end-
to-end solution for the detection and segmentation of cell-level
anomalies in PV modules.

The rest of this paper is organized as follows. Section 2
surveys the related work of anomaly detection in photovoltaic
panels using EL imagery. Section 3 introduces the main contri-
butions of the article. Section 4 presents a detailed explanation
of the proposed pipeline. Section 5 describes the EL dataset
used for the training and validation tasks. Section 6 presents the
results obtained from the application of the proposed pipeline
to the datasets introduced in Section 5. Finally, Section 7 con-
tains the concluding remarks and outlines some areas for further
research.

2



2. Related work

The detection of anomalies in photovoltaic panels has
evolved from the early use of optical images to the recent adop-
tion of more specific images such as multi-spectral, thermal,
optical, etc. (Schuss et al., 2016; Addabbo et al., 2017; Xu
et al., 2014; Schuss et al., 2018). Recently, new detection ap-
proaches have emerged that handle electroluminescence (EL)
imagery, which allow the detection of slight anomalies. This
section presents current approaches for the detection of anoma-
lies using EL imagery.

One of the first attempts to use deep learning techniques
with EL images on the domain of photovoltaic panels was in-
troduced by Deitsch et al. (2018). In this work, an automated
segmentation method was proposed for the extraction of indi-
vidual solar cells from EL images of PV modules. This method
applies a bottom-up pipeline that exploits low-level edge fea-
tures to progressively infer a high-level representation of the
solar module and its cells.

However, this approach is not robust to distinct variations
of PV modules, such as the cell number, construction materi-
als, type of cells, etc. It lacks the ability to capture abstract
features among large and diverse data, which other methods,
such as deep learning techniques, can provide. It should also
be noted that this kind of technique does not make any anomaly
detection or location over the images. It exclusively focuses on
the extraction of solar cells from PV panels, so it is rather a
pre-processing technique.

In the interest of strengthening the state-of-the-art, Deitsch
et al. (2019) continued making contributions to the field of
anomaly detection in PV panels via EL imagery, publishing
a method for automatic classification of defective photovoltaic
module cells. This work introduces two novel approaches for
the automatic detection of cell-level defects in a single image
of a PV cell: a) a hardware-efficient approach that uses a Sup-
port Vector Machine (SVM) to classify hand-crafted features
and b) a more hardware-demanding approach that uses an end-
to-end deep Convolutional Neural Network (CNN) that runs on
a Graphics Processing Unit (GPU). The application of an SVM
implies the use of hand-crafted features, making the classifier
less robust to the domain’s intrinsic variations and therefore,
less scalable. In turn, using a deep CNN implies a greater ab-
straction level and hence, more robustness and scalability. Ac-
cording to the tests carried out by the researchers, the approach
of deep CNNs is more accurate than the SVM.

The work of Deitsch et al. (2019) reveals with strong evi-
dence the benefits of using Deep Learning techniques to clas-
sify anomalies. Tang et al. (2020) contributed to the state-of-
the-art publishing a comparison of the performance of various
models: VGG16, ResNet50, Inception V3, and MobileNet. In
this work, the authors generated the experimentation dataset us-
ing an approach combining traditional image processing tech-
nology and Generative Adversarial Network (GAN) character-
istic. Although the classification is focused on the defect type
instead of detecting non-defective and defective cells, the ob-
tained average precision achieved state-of-the-art results.

In these latter approaches (Deitsch et al., 2019; Tang et al.,

2020), the deep learning architectures were not created specifi-
cally for anomaly detection in solar panels, but for classification
challenges, where they achieved state-of-the-art performance.
Akram et al. (2019) presented a novel approach using a light
convolutional neural network architecture for recognizing de-
fects that achieved the state-of-the-art. In this case, the model
classifies a cell as defective or non-defective instead of provid-
ing more detailed information as in the previous case.

On the same innovative line, Chen et al. (2019a) proposed
a novel model called SEF-CNN to tackle anomaly detection by
exploring the function of traditional filters in deep learning ap-
proaches. This method filters the images using steerable evi-
dence filters (SEF), making the features extracted by the con-
volutional neural network more discriminative and robust.

These approaches only provide the defective level of the so-
lar cell but do not disclose details of these defects. Mayr et al.
(2019) tried to solve this problem by introducing a weakly su-
pervised strategy for the segmentation of cracks on solar panels.
The proposed strategy uses ResNet-50 (He et al., 2015), one of
the most used CNN, with some modifications to derive a seg-
mentation from the network’s activation maps. The main con-
tribution of the mentioned paper is the application of Lp nor-
malization to aggregate the activation maps into single scores
for classification. However, this method obtains the segmenta-
tion of the anomaly from the activation map, making the mask
less precise and concrete. Rahman and Chen (2020) proposed
an algorithm that leverages the advantage of multi attention net-
works to efficiently extract the most important features and ne-
glect the nonessential ones. They incorporate a modified U-net
called multi attention U-net (MAU-Net) which requires well-
annotated data to be trained but can segment and detect various
complex defect masks correctly. The U-Net architecture was
also exploited by Balzategui et al. (2020).

3. Contributions overview

Based on the reviewed state-of-the-art, the number of pub-
lications related to the segmentation of anomalies in PV cell
images is very limited. The mentioned approaches focus en-
tirely on the anomaly detection of individual, independent PV
cell images. As a matter of fact, data collection procedures gen-
erate images of entire PV panels, which are comprised of sev-
eral cells. To apply these methods directly to PV panel images,
a preprocessing step is necessary, such as the one proposed by
Deitsch et al. (2018).

In addition, the available datasets are limited to a specific
type of cell, and there are few variations in terms of shape,
material and structure. This lack of diversity and quantity of
images has not prevented the application of deep learning tech-
niques, but it has not allowed extracting the full potential from
them, giving as a result less effective and less robust techniques.

In this article, the aforementioned gap in the literature is
addressed, that is, the lack of methods that extract high-level
anomaly information (localization) from PV panel imagery.
Therefore, in this publication a novel pipeline is proposed to
detect, locate and segment cell level anomalies from EL images
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Figure 2: Overview of the proposed pipeline divided on four processing mod-
ules: Detection, Classification, Segmentation and Attachment.

of photovoltaic modules, extracting high-level information us-
ing various deep learning techniques.

The idea is to create a deep learning based end-to-end
pipeline, divided into four adjacent processing units, creating
a sequential workflow as illustrated in Figure 2. The proposed
end-to-end system is able to locate cell-level anomalies or de-
fects of a solar module using an EL image.

The first module (cell detection) takes an image of an entire
PV module and extracts from it all the PV cells, detecting them
one by one. Then, each cropped cell is processed on the second
module (cell classification) and is labeled as non-defective or
defective. The cells that are classified as defective are further
processed by the third module (failure segmentation) and are
segmented in order to locate the defective areas. Finally, the
last module (attachment) processes both the non-defective and
defective segmented cells images, and attaches them to create
a complete image of the PV panel, with all the defective zones
detected. See Figure 1 for an illustration of the proposed work-
flow. The first three units (detection, classification and seg-
mentation) make use of deep learning techniques to accomplish
their task, and the attachment stage will be the only one to use
a naive algorithm.

The development of the proposed pipeline can be a valuable
contribution to the state-of-the-art of anomaly detection in pho-
tovoltaic modules, and to the sector working on early failure
mechanisms and operation and maintenance of PV.

In addition, the modularity of the pipeline allows the train-
ing of the three models simultaneously. The training will only
require two datasets, one for cell detection and the other for cell
classification and segmentation, as it is described in Section 6.

The proposed end-to-end system has been tested with
polycrystalline-Si and monocrystalline-Si modules with full
cell and half-cut cells of 3 and 5 busbars. Besides, data from
other sources can be efficiently fed into the proposed deep
learning models, thus improving their performance and allow-
ing more types of anomalies to be located and segmented.
Therefore, the pipeline can be adapted and extended to work
with new PV cell technologies that may appear on the market,
such as multi-busbar cells or bifacial cells. Such advantage also
applies to the segmentation model, which extracts the defective
regions of a cell by encoding the distribution of non-defective
cells in a compressed form. When the segmentation model is
presented with a new cell anomaly that is absent in the training
dataset, it will be still able to detect it, considering the model
has retained a reference of what a non-defective cell is.

It should be noted that EL images usually require perspec-

tive distortion correction and lens distortion removal among
other rectifications. These functions are not included in the pro-
posed approach, so if required, it will be necessary to perform
the rectification prior to the use of the pipeline.

In other respects, during the inference of the detection
model, some outer areas of the cell may be omitted. To avoid
losing the features of the outer part, an offset of 10% of the
cell size is applied to expand the inferred box. Even though
the Figure 1 shows the original boxes, the classification model
receives the expanded boxes. This post-processing technique
allows minimizing the impact of the outer regions omitted by
the detection model in subsequent stages of the pipeline.

4. Methodology

Having introduced the main architecture of the pipeline, in
this section a thorough description of the selected methods for
each module is presented. It is worth noting that the develop-
ment of each module is independent of the rest.

4.1. Detection module
The objective of the detection phase is to extract all PV

cells from the PV panel image, without having to classify them
among distinct classes. Object detection deep learning archi-
tectures are divided into two main classes. Two-stages detec-
tors (Girshick et al., 2013; Dai et al., 2016) are based on region
proposals, which means they generate regions of interest in the
first stage and then process those regions for object classifica-
tion and bounding-box regression. On the other hand, one-stage
models (Redmon et al., 2016; Liu et al., 2016) target the task as
a simple regression problem, learning class probabilities and
bounding box coordinates.

Two-stage models have the highest accuracy rates in major
object detection competitions, while one-stage models tend to
have lower performance. In contrast, single-stage models have
a shorter inference time, performing real-time tasks, while two-
stage models have a much longer inference time (Jiao et al.,
2019). In our case, the efficacy of the cell extraction task is mea-
sured by the accuracy, not by the performance speed. For this
reason, a region-based architecture was preferred to accomplish
this task. Hence, the architecture of the model was readjusted
to meet our performance requirements, using only the region
proposal functionality and casting aside the classification part.
This way, training costs and inference time are reduced.

Entire PV panel images are fed into the cell detection pro-
cess, without any surrounding elements. Each panel contains a
certain amount of adjacent cells, and all cells are expected to
have the same characteristics, such as type of cell, shape, etc.

PV module images do not have the complexity of other
types of images, such as the ones found on the Imagenet dataset
(Deng et al., 2009). A typical PV cell has a uniform color back-
ground and several horizontal or vertical lines (busbars). For the
task of cell detection, the low structural complexity of the PV
cells does not require a sophisticated neural network architec-
ture to achieve good performance. Faster R-CNN provides the
perfect trade-off between performance and training computa-
tional cost for this specific task. This architecture was proposed
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Figure 3: Modified Faster R-CNN: Structural overview of the object detection architecture used to locate PV cells from EL panel images. The feature map is created
using an convolutional neural network called ResNet-101 (He et al., 2015). Also, the fully convolutional layer has been modified to only regress the coordinates of
cells, skipping classification part of the original Faster R-CNN.

by Ren et al. (2015), and obtained 69.9% mAP an accuracy in
PASCAL VOC challenge.

Faster R-CNN uses a Region Proposal Network(RPN)
based on VGG-16 (Simonyan and Zisserman, 2014) classifi-
cation CNN, to create region proposals from the input images.
RPN slides k anchor boxes (sliding-windows) over the convo-
lutional feature map of the image and generates all region pro-
posals (see Figure 3).

We propose to modify the Faster R-CNN architecture to ad-
just the network to perform this task. The modification consists
of the use of ResNet101 (He et al., 2015) for the creation of the
convolutional feature map, instead of using the VGG-16. This
change was justified based on the ability of ResNet to extract
features from images avoiding over-fitting, which is possible
due to a large number of layers and the skip connections.

Figure 4: Comparison of ImageNet(Deng et al., 2009) accuracy of different
models with respect to the amount of neurons in millions. The points in the red
line represents the variations of EfficientNet and the red line the state-of-the-art.
source: (Tan and Le, 2019)

4.2. Classification module

The classification module aims to discriminate non-
defective from defective PV cells. This module as well as the
detection module can be addressed using classic computer vi-
sion methods, but, as was explained above, deep learning meth-
ods provide more accurate and robust solutions. The applica-
tion of such methods requires the models to be trained using
data-driven supervised techniques.

As explained above, Deitsch et al. (2019) evidenced the
benefits of using deep learning techniques comparing the
anomaly classification performance of a VGG-19 with an
SVM. Subsequently, novel anomaly detection approaches have
adopted these techniques. However, each approach uses dis-
tinct methods, datasets and performance metrics, which makes
the comparison inequitable. In our case the objective of the
classification module is to classify a PV cell as non-defective
or defective, using as an input an EL image of a PV cell. There-
fore, the approaches of Tang et al. (2020); Chen et al. (2019a)
are not comparable with the aim of this classification model.

For the classification module, a novel architecture called Ef-
ficientNet has been selected, which was proposed by Tan and Le
(2019). This network outperformed the state-of-the-art on the
classification contest ImageNet (Deng et al., 2009) while hav-
ing 88.1% fewer neurons than the previous top of the ranking.
The lightness and efficiency of this network achieve better per-
formance with less training cost, thus it is feasible to address
more complex tasks.

The classification problem of PV cell condition is not com-
plex in terms of domain or number of classes, but in terms of
the distinctive features of each class (see Figure 5). Most of the
anomalies that make a cell defective are micro-cracks or dents,
which can be confused with the noise generated in the capture.

Therefore, a model that discerns non-defective and defec-
tive PV panels requires long training periods to be able to
learn the characteristic features of each class. It was decided
to use a smaller but more precise variation of the network, so
that the model could be trained faster. The selected network
is EfficientNet-B1, which contains 7.8M neurons and achieves
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(a) Non-defective. (b) Defective.

Figure 5: Representation of the strong resemblance that can exist between non-
defective and defective PV cells, making it harder for a classifier to distinguish
between one class and another.

79.2% accuracy on ImageNet (see Figure 4).
When presented with a new image, these models estimate

the uncertainty about the predicted class label i.e. how sure
they are about the prediction. This uncertainty may be high on
borderline cases in which the image has no clear association to
neither defective nor non-defective PV modules. In pursuance
of minimizing the impact of this uncertainty on the detection
performance, it was decided to label as defective all the images
classified by the model as non-defective with lower feasibility
than 70%. This policy generates more false positives (FP), as
more non-defective images are classified as defective, resulting
in a reduction in the number of false negatives (FN). However,
this procedure does not affect the performance and accuracy of
the entire pipeline, since FP images do not generate a damaged
area segment when being evaluated by the segmentation mod-
ule. In such case, the output of the segmentation model will be
the original PV cell without anomaly annotation.

4.3. Segmentation module

The classification module determines whether a solar cell
is non-defective or defective, but it can not characterize the
anomaly that makes it defective. The defect characterization
requires the observation and parsing of higher-level patterns,
which, in turn, implies superior annotation complexity. There-
fore, the segmentation phase aims to extract from an image the
area that makes the cell defective.

Dissuasive approaches. The challenge of object segmentation
is widely addressed in various computer vision tasks and other
areas as well. Lately, with the emergence of deep learning tech-
niques, extracting masks from objects is being undertaken with
high-level models. As has been mentioned above, training su-
pervised deep learning models generally require annotated large
datasets, making data gathering a critical task.

Most domains, such as the one under discussion in this ar-
ticle, lack a robust and annotated dataset. Therefore, an alter-
native method that does not require specific annotations is re-
quired for the object segmentation task. An unsupervised learn-
ing technique could be an alternative to create a segmentation
model, but the lack of high-level annotations makes the learning
process tough and mostly ineffective.

Weakly supervised proposal. Considering the limitations of
both supervised and unsupervised segmentation techniques, it
was decided to take advantage of lower-level annotations (clas-
sification tags), which are much easier to collect. These an-
notations can be used by a weakly supervised model to infer
high-level information from the images.

Conversely, the classification model must distinguish be-
tween non-defective and defective PV cells, and this informa-
tion can be used as lower-quality labels to train the segmen-
tation model. Hence, the label of the cell (defective / non-
defective) is used to train a model to learn the actual distribution
of non-defective PV cells. This model then processes defective
cell images and infers the deviation from the learned distribu-
tion. In this manner, this model is able to detect the area of the
image outlying the distribution of non-defective cells.

Outlier detection can be addressed using deep learning or
conventional techniques, depending on the domain’s abstrac-
tion. The outliers present on images live in a n-dimensional
space, n being the number of pixels in the image. The presence
of multivariate outliers complicates the use of conventional de-
tection techniques but leaves the way open for more advanced
and complex models, such as deep learning models. Hence,
it was concluded that a deep learning model was the best ap-
proach for this task.

Generative models. Generative models aim to learn the distri-
bution of original data and are able to generate new data with
some variations. Among the family of generative models, it
was decided to use an autoencoder since its objective is to learn
a representation of data for noise reduction rather than to gen-
erate new data. In this phase, the goal is to train an autoencoder
model with non-defective cell images, learning the distribution
of these images, so that the model can replicate the training set.
Later, when the model encodes an image of a defective cell, due
to the intrinsic similarity with the codification of non-defective
cell images, it will decode the defective cell image as a non-
defective version of it. This way, by subtracting the generated
image from the original cell image, the damaged area is seg-
mented.

Autoencoder. The autoencoder is composed of two symmet-
rical CNN architectures: encoder and decoder. The encoder
(Enc) receives an image I of shape 300 × 300 × 1 and converts
it to a d-dimension array called latent space. The value of d
determines the capability of the autoencoder to learn the most
complex and finer details of the data distribution. In case the
value of d is higher than the input data shape, the autoencoder
tends to simply copy the input image. The decoder (Dec) takes
in the latent space and processes it using CNNs, generating an
output image Î of shape 300 × 300 × 1.

Î = Dec(Enc(I)) = I. (1)

Since the dataset available (described in Section 5) is com-
posed of several types of solar cells, the autoencoder has to
learn the actual distribution of each cell type. Different cell
types alter the shape, the material texture and the number of
busbars of the cell. Despite this diversity, the autoencoder
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Figure 6: Visualization of the autoencoder topology for the segmentation phase.

should be able to generate new images without vanishing the
representation of the main characteristics. To accomplish a sat-
isfactory performance, a custom CNN architecture has been de-
signed to convey high-level features to the latent space (see Ta-
ble 1).

Layer Output Shape Filters Kernel Stride
Input 300 × 300 × 1

Conv2D 150 × 150 × 64 64 4 × 4 2 × 2
Conv2D 150 × 150 × 16 16 3 × 3 1 × 1
Conv2D 75 × 75 × 32 32 4 × 4 2 × 2
Conv2D 75 × 75 × 16 16 3 × 3 1 × 1
Flatten 90000
Dense 500
Dense 90000

Deconv2D 75 × 75 × 16 16 3 × 3 1 × 1
Deconv2D 75 × 75 × 32 32 4 × 4 2 × 2
Deconv2D 150 × 150 × 16 16 3 × 3 1 × 1
Deconv2D 150 × 150 × 64 64 4 × 4 2 × 2

Output 300 × 300 × 1

Table 1: Autoencoder topology for the segmentation phase.

The small amount of convolutional layers allows the cell
characteristics to persist during convolutions. The downsam-
pling feature maps have only been applied a couple of times to
prevent high-level features from vanishing during compression.

Loss function. According to the literature, the most popular
loss functions are based on per-pixel error measurement, which
assumes the existence of independence between the neighbors
of each pixel. Bergmann et al. (2018) proved that using a loss
function that captures local inter-dependencies between image
regions drastically improves autoencoders’ performance. Fol-
lowing their approach, the structural similarity index metric
(SSIM) by Zhou Wang et al. (2004) was selected as the loss
function. This metric takes into account luminance l, contrast c
and structure s to compute the similarity between two images.

S S IM(x, y) = l(x, y)αc(x, y)βs(x, y)γ. (2)

SSIM is measured using a sliding window of K×K over the
image and finally computing the average of the measurements.
A low K-value leads to a slower and more expensive learning
process but a better capability of the autoencoder to represent

more precisely the real distribution of the training set. This
metric (see Equation (2)) returns a value in the range [−1, 1],
where 1 means x and y are identical and −1 means that they are
completely different. In our case the objective is to maximize
the value of SSIM, so the loss function will be the minimization
of the negative SSIM (see Equation (3)).

Loss(Î, I) = −S S IM(Î, I). (3)

Anomaly Extraction. Once the model has learned the real dis-
tribution of the training set of non-defective photovoltaic cells,
the autoencoder will process defective cells (I) and create their
non-defective version (Î).

D = S S IM(I − Î). (4)

After the autoencoder generates the new image (Î), the dif-
ference between both images is computed (D), as expressed by
the Equation (4). SSIM was used to calculate the difference,
for the same reasons stated above. The matrix D has the same
dimension as the images with values between −1 and 1. Each
scalar value represents the SSIM of the sliding window where
that pixel is located. If the value is near 1 means that the differ-
ence in that part of the image is minimal, whereas a value close
to −1 means there is a significant difference. In order to reduce
noise and focus exclusively on the parts where the difference
between both images is notable, the image is post-processed us-
ing Otsu’s thresholding technique (Otsu, 1979), which creates
a binarized image (B).

Algorithm 1 Anomaly Segmentation
Input: Original Image (I)
Output: Segmentation of the anomalies of I(S)

Î = autoencoder(I)
D = S S IM(I, Î)
B = threshold otsu(D)
S = I + red(B ∗ 255)
return S

5. Datasets

Capturing electroluminescence images of photovoltaic pan-
els is usually made when the panel is mounted at the factory,
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Figure 7: Data processing pipeline: preprocessing, annotation and augmenta-
tion required for each model

but it can also be captured at various stages of the project. This
fact is due to two reasons: first, a capture of this type of image
requires very specific and restrictive environmental conditions,
and second, it requires a preceding procedure that is incompat-
ible with having the panel operating at the plant. In this article,
two datasets of electroluminescence images have been used to
validate the proposed pipeline: a) ELPV and b) TecnaliaPR. In
this section a detailed explanation of both datasets is presented.

5.1. ELPV
The ELPV dataset is provided by Buerhop-Lutz et al.

(2018) on their GitHub repository. The dataset contains 2, 624
sample images of non-defective (1116) and defective (1508) so-
lar cells, with defects ranging from micro-cracks to completely
disconnected cells and mechanically induced cracks (e.g. elec-
trically insulated or conducting cracks, or cell cracks due to
soldering) (Deitsch et al., 2018). It is important to emphasize
that each image represents one sample (see Figure 8) of a pho-
tovoltaic panel and not an entire panel. Hence, the images are
small-sized, 300×300 pixels, and 8-bit grayscaled. The images
were obtained from 42 photovoltaic panels and were normal-
ized concerning perspective and size.

Considering the intrinsic difficulty of detecting the degree
of degradation or damage of a photovoltaic cell, experts anno-
tated the defect likelihood of each cell. Thus, every image is
annotated with a value that represents the probability of the cell
being damaged. These probabilities are discretized to have a
limited number of classes (classification), instead of having a
continuous one (regression). This discretization process leads
to a four-class classification (0.0/0.33/0.66/1.0) that has been
further relabeled into two classes: non-defective and defective.

Figure 8: Sample images from the electroluminescence cell imagery dataset
(Buerhop-Lutz et al., 2018).

When two labels refer to similar classes and the difference be-
tween them is hard to detect, the uncertainty to train a precise
deep learning model increases exponentially. In order to avoid
an increase in uncertainty, the most common practice is to unify
both classes. In this case, the relabeling process has separated
the cells with defects likelihood above 0.33 as defective and the
ones with defects likelihood equal to 0.0 as non-defective (see
Table 2).

It is also important to keep in mind other annotation features
to explore and evaluate imagery datasets. In this case, there is
only one extra feature apart from the label, which is the type of
solar cell. Photovoltaic panels can be constructed with a wide
variety of materials. Among this variety, the panels used to
generate the ELPV dataset were made from Monocrystalline
and Polycrystalline silicon. Table 2 summarizes the number of
cells in the ELPV dataset, separated by cell type and by defect
likelihood.

Class Defect
likelihood Cell Type Quantity

Non-defective 0,0 Monocrystalline 588
Polycrystalline 920

Defective

0,33 Monocrystalline 117
Polycrystalline 178

0,66 Monocrystalline 56
Polycrystalline 50

1,00 Monocrystalline 313
Polycrystalline 402

Table 2: ELPV dataset: number of cells per type and defect likelihood

Recalling that electroluminescence images are captured at
the end of the fabrication process, finding defective cell images
is very unusual due to the lack of defective fabrication cases.
This is why the number of annotations of each class is quite
unbalanced: 1116 defective vs 1508 non-defective.
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5.2. ELPV Augmented

Applying data augmentation techniques enriches the data
and makes models more robust. In the ELPV dataset, despite
having a large number of images and annotations, all the data
was captured from the same orientation and under similar con-
ditions making the dataset less general and vulnerable to small
variations. Moreover, analyzing the number of images of each
type of cell (see Table 2), it can be observed that there are
more Polycrystalline cell images (1550) than Monocrystalline
(1074). A balanced dataset in terms of the variety of domain
examples can be very beneficial to the deep learning model to
generalize out-of-sample data. In the ELPV dataset, the type of
cell is the variation on domain examples.

In this sense, data augmentation techniques can help to bal-
ance the dataset, creating more examples of concrete types of
images. Applying mathematical transformations such as flip,
rotate, add noise, etc. will produce more data to train the deep
learning model. For the data augmentation task, a fast im-
age augmentation Python library called albumentations (Bus-
laev et al., 2020) has been used. This library provides two types
of transformations: (i) Pixel-level transformations mutate color,
brightness, blur, etc. whereas (ii) Spatial-level change images
shape, structure, size, etc. In this case, taking into account the
domain and how images are captured, some transformations
have been discarded. Part of the augmented images cannot be
related to a real situation, such as an elastic transformation of
the cell. Hence, the ELPV augmented dataset was created com-
bining and applying the transformations included in Table 3 to
the original data.

Pixel-level Spatial-level
Random Contrast IAA fliplr
Random Gamma IAA flipud

Random Brightness IAA perspective
Blur Rotate

Jpeg compression Grid distortion
Solarize Transpose
Equalize IAA sharpen

ISO Noise Optical distortion
Random Shadow Horizontal flip

Contrast Limited AHE Vertical flip

Table 3: Transformations used on data augmenting.

The result is a dataset with 3000 images per both non-
defective and defective cells (see Table 4). It is important to
emphasize the relevance of the relabeling, which has allowed
to have less unbalanced classes for posterior balancing. If the
difference in annotations between classes had been bigger (e.g.
106 images of class 0.66 and 715 of class 1.0) the augmenta-
tion would have been applied several times over few images,
resulting in very similar data.

Besides balancing the dataset regarding the number of im-
ages per class, the dataset was also balanced with respect to the
number of images per type of cells. After the augmentation pro-
cess, this difference has completely vanished, as can be seen in
Table 4. In the new dataset, the number of monocrystalline cell

Class Type Original Processed

Non-defective Monocrystalline 588 1500
Polycrystalline 920 1500

Total 1508 3000

Defective Monocrystalline 486 1500
Polycrystalline 630 1500

Total 1116 3000

Total 2624 6000

Table 4: ELPV dataset: number of original and processed cells per type and
class

images is 3000 and polycrystalline is also 3000. The number
of images has increased from the 2624 initial ones to the aug-
mented 6000, equally divided into non-defective and defective
cell images. In summary, the original dataset has been modified
on behalf of obtaining a more robust, balanced and complete
dataset.

5.3. TecnaliaPR

The dataset is composed of 67 solar modules of differ-
ent cell technologies, namely monocrystalline of 5 busbars,
monocrystalline half-cells of 5 busbars and heterojunction of 3
busbars). The EL images were acquired at Tecnalia’s facilities,
in the framework of the PROMISE project (KK2019/00088),
using an Endeas QuickSun 600Lab solar simulator with an in-
tegrated EL system. This laboratory equipment features an EL
image acquisition system with 200 um resolution by means of
4 infrared CCD cameras of 8.3 MP. Each camera focuses on
one-fourth of the PV module and the final image is obtained
by stitching the images captured from the 4 cameras (QuickSun
software). It is important to emphasize that each image repre-
sents the entire solar module and not one of the many cells (see
fig. 7) of a photovoltaic module. These modules had been op-
erating under real conditions in the outdoors of the Tecnalia’s
facilities and were temporarily removed to capture the images.
The images are quite large, 7942 × 4096 pixels (later subsam-
pled to 2111 × 1261), and 8-bit gray-scaled. The number of
cells per module varies between 60 and 120, yielding a total of
5592 cells. Among these, 4885 are identified as non-defective
and the remaining 707 as defective. This information has been
illustrated in Table 5. The cell images were labeled by a group
of experts in defective solar cells, having various defects such
as electrically insulated cracks, micro-cracks, or dark areas.

To train the cell detection model, a subset of the dataset was
annotated with the bounding box of each cell. This task was car-
ried out with LabelImg, an image annotation tool that helps to
label object bounding boxes in images (Tzutalin, 2015). More-
over, analyzing the number of images of each type of cell, it
can be observed that there are more cell images with 3 bus-
bars (2592) than with 5 busbars (1800) and elongated (1200).
Hence, this dataset is also quite unbalanced with respect to the
cell class and the cell type, as was the ELPV original dataset.
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Cell Type Modules Cells per
module Cell Size

Cells

Total
non-defective /

defective

Elongated 10 120 397 × 682 1200 984 / 216
3 Busbars 27 96 661 × 512 2592 2281 / 311
5 Busbars 30 60 794 × 682 1800 1620 / 180

Total 67 - - 5592 4885 / 707

Table 5: TecnaliaPR dataset: number of modules and cells per type and class

For that reason, the same augmentation techniques have been
applied to the TecnaliaPR dataset, which is explained in the next
section.

5.4. TecnaliaPR Augmented

Data augmentation techniques can help to balance the
dataset, creating more examples of concrete types of images.
The TecnaliaPR dataset has been augmented using the same li-
brary as with the ELPV dataset (albumentations (Buslaev et al.,
2020)). Rather than trying to generate a larger dataset, the aug-
mentation task tries to balance the cell class and the cell type
across the dataset. In this sense, the limiting category is the de-
fective class, with 707 images compared to the non-defective
class 4885, an almost 7 to 1 ratio. Table 6 summarizes the
resulting quantities of cell images from the augmentation pro-
cess. The number of defective images increased to 2083, with
a balanced distribution across cell type (around 700 images per
type). The number of non-defective images, on the contrary,
was filtered to 2984. It should be noted that only 1000 images
of 3-busbar and 5-busbar were used to balance the dataset. Non-
defective cells can be characterized with fewer images than de-
fective cells. This is because defective images can have a vari-
ety of anomalies with different shapes, forms and sizes, whereas
non-defective ones are more similar between them. Thus 1000
images per class were sufficient to learn the distribution of non-
defective PV cells. With this, the modified dataset was finally
balanced, both regarding the cell type and the cell class.

Class Cell Type Original Processed

Non-defective
Elongated 984 984
3 Busbars 2281 1000
5 Busbars 1620 1000

Total 4885 2984

Defective
Elongated 216 694
3 Busbars 311 708
5 Busbars 180 681

Total 707 2083

Total 5592 5067

Table 6: TecnaliaPR dataset: original and processed cells per type and class

Cell Type Cells
per panel

Panels Cells

Total Train / Val Total Train / Val

Elongated 120 10 8 / 2 1200 960 / 240
3 Busbars 96 27 22 / 5 2592 2112 / 480
5 Busbars 60 30 24 / 6 1800 1440 / 360

Table 7: Detection Dataset: TecnaliaPR

6. Experimental Analysis and Results

Having described the deep-learning architecture of each
module, in this section the training results and the performance
of the obtained models are presented. The training was per-
formed using a GPU Tesla T4 with 16Gb of memory. It should
be pointed out that even though an iterative procedure has been
followed for the training of each model, in this section only the
final version of the models is presented.

6.1. Detection model

Training the modified Faster R-CNN model requires well-
annotated images of photovoltaic panels. Each cell of the
panel will have to be annotated by a bounding box contain-
ing xmin, ymin, xmax, ymax coordinates and the class, which in our
case is always a unique class (cell). As it has been reviewed in
the previous Section 5, the dataset for the detection task is the
expert-labeled TecnaliaPR dataset. The dataset contains 5592
annotations of cells over 67 panel images of 2111 × 1261 × 1
and has been split in two parts, training (80%) and validation
(20%) sets (see Table 7). The model was trained for 6, 500
steps, using a learning rate of 0.00003. Every 200 steps the
real performance of the model was validated using the valida-
tion set.

Considering that in a PV module image there may be be-
tween 50 and 100 PV cells, the maximum of generated region
proposals was set to 300, with an objectness loss weight of 1.0
and a classification loss weight of 0.0. Finally, for the selection
of the most promising regions the non-max suppression (NMS)
(Neubeck and Van Gool, 2006) threshold is set to 0.9, to avoid
the overlap between generated region proposals.

As it can be seen in the training curve (see Figure 9), during
the first steps the loss reduction was very accentuated. This
usually happens when transfer learning techniques are not used.
Due to this lack of previous knowledge, in the first 200 steps
the loss was high (around 4) and once the model learned the
complexity of the domain, the validation loss converged rapidly.

This training process has resulted in a model with a valida-
tion loss of 0.03844 which is a strong indicator of good perfor-
mance. After the training process, the validation dataset was
also used to certify the correct performance of the model and
its proper functioning. The metric used to measure the model’s
performance was the average precision (AP), which is based
on the object detection challenge COCO (Lin et al., 2014). Ac-
cording to this measurement the cell detectors AP is 0.9936 (see
Figure 10).
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Figure 9: Detection loss in logarithmic scale, from top to bottom: localization,
objectness and total loss (ETC: 40 minutes).

Figure 10: Representation of the performance of the Fast R-CNN detector on
four solar panels, each one with different types of cells. The left side contains
the original images and the right side the result of the processing done by our
model, representing each detected cell in a blue bounding box.

6.2. Classification model

The aim of training the EfficientNet-B1 classifier is to
learn to discriminate between non-defective and defective cells,
which as mentioned above, is a non-trivial task (see Figure 5).
To accomplish such a task, it was necessary to collect as much
data as possible, hence both datasets (ELPV and TecnaliaPR,
explained in Sections 5.1 and 5.3) were unified. In this way, a
more robust dataset was obtained, with more diversity in terms

Figure 11: Classification training: accuracy and training/validation loss at each
step (ETC: 960 minutes)

of anomalies and types of cells. The dataset for the classifi-
cation model contains 11083 images, balanced between non-
defective (6000) and defective (5083) cell images, which has
been split into two parts, training (82%) and validation (18%)
sets. Regarding the distribution of images, there were enough
defective images from the original TecnaliaPR dataset (2083),
so it was decided not to take more from this set in order to not
unbalance the training dataset (see Table 8).

The model has been trained for 75, 000 steps, performing a
validation process every 10, 000 steps. The learning rate was
set to 0.00012 with a proportional decay every 200 steps. The
training and validation batch size was 16 and for the optimiza-
tion of the training in GPU the channel first format was used.

Observing the evolution of the loss function during training
(see Figure 11) it can be seen that the value of the loss jumps at
each training step. This happens because of the great diversity
of the dataset in terms of material, cell type or shape. Despite
this fact, the model has gradually learned to reach a consider-
ably low loss value for the complexity of the domain. As it
can be observed, the training loss has been consistently lower
than the validation loss. The validation loss has been decreas-
ing gradually and the training loss started to converge into 0.75
in the last epochs. Although this may indicate that continuing

Dataset Type Augmented Quantity

ELPV non-defective Yes 3000
defective Yes 3000

TecnaliaPR non-defective No 3000
defective Yes 2083

Total 11083
Train/Validation 9083/2000

Table 8: Classification Dataset
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Figure 12: Representation of the performance of the EfficientNet-B1 classifier
on four solar panels, each one with different types of cells. The green boxes
represent non-defective cells and the red ones defective cells. It should be noted
that, in the second image, the cell in the right bottom corner was incorrectly
classified by the model as non-defective. The rest of the cells were correctly
classified by the model.

Labels
P N Total

Prediction P 804 291 1095
N 33 872 905

Total 837 1163 2000

Table 9: Confusion matrix for the classification model in the validation set

the training may improve the model, it was decided to stop the
training process due to its asymptotic behavior.

After the training process, the performance of the model
was measured, obtaining an accuracy of 0.84. The presented
model is almost as accurate as the model proposed by Deitsch
et al. (2019) (0.863) and lags behind the precision obtained by
Akram et al. (2019) (0.9302). Nevertheless, it must be stated
that the complexity of the problem tackled here is higher (more
cell types and diversity of anomalies), which indicates that the
model is sufficiently robust and reliable to use in our pipeline
(see Figure 12).

6.3. Segmentation model

The training set for the segmentation model is based on
original non-defective cell images from both the ELPV (1508)
and TecnaliaPR (4885) datasets, as illustrated in Table 10. An

Dataset Type Original Augmented
ELPV non-defective 1508 2692

TecnaliaPR non-defective 4885 8722

Total 6393 11414

Table 10: Segmentation Dataset

Figure 13: Segmentation loss: training and validation loss at each step (ETC:
32 minutes)

augmentation process has been applied to these non-defective
images, going from 6393 to a total of 11414, based on two rea-
sons.

First, it increases the amount of available data, which is
beneficial for the deep learning model. Second, it balances the
dataset with respect to the cell types. In fact, there are 5 main
types of cells: monocrystalline and polycrystalline on ELPV;
and elongated, 3 busbars, and 5 busbars on TecnaliaPR. After
the augmentation, approximately 2500 images have been ob-
tained for each cell type. The augmentation process is carried
out with simple transformations, such as flipping and mirroring.
More complicated transformations could introduce a consider-
able amount of noise, making the autoencoder less accurate.

As the training process for segmentation has a higher com-
plexity than the detection and classification model, it implied
a harder tuning. Due to the small amount of data and variety
of cell types, the risk of overfitting and its consequent lack of
generalization for all cell types is considerably high.

First, the parameters of the loss function SSIM (see Equa-
tion (2)) were defined. According to the work of Zhou Wang
et al. (2004) the parameters k1 and k2 have been maintained at
their default values and only the size of the sliding window (K)
has been modified, which makes the measurement sharper or
softer. After reviewing the use of SSIM in different domains
(Chen et al., 2019b; Ren et al., 2019) and analyzing its perfor-
mance as a loss function in deep autoencoders (Bergmann et al.,
2018), it was decided to set K-value to 5. Even though this
small value leads to a more complex learning process, the au-
toencoder carries enough structural capability to represent com-
plex details such as busbar numbers, shapes, edges, and some
other main features of the photovoltaic cell.

Instead of using pooling layers, strides were used since they
offer better performance (Scherer et al., 2010). LeakyRelu (Xu
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et al., 2015) was selected as the activation function, with an
alpha value of 0.2. The advantage of using this activation func-
tion in comparison with other functions is that LeakyRelu does
not require the use of batch normalization layers, thus keeping
computational complexity lower. The dimensionality of latent
space is very important, so a large value (d = 500) was used
to ensure the high-level features of the last convolutional layers
keep persistent on the latent space.

Once the parameter tuning has been concluded, a batch size
of 8 was established and trained the model for 13400 steps,
with a learning rate of 0.0015. To measure the efficiency of
the training, a validation process was performed at each epoch
(268 steps). Since no validation set was available, it was de-
cided to use k-folds cross-validation, with k = 10. Hence, for
each epoch, a random fold was selected among the 10 available
to perform the validation and the rest for training. The evolu-
tion of the training loss (see Figure 13) shows that the loss has
been decreasing uniformly converging in a value close to 0.992
(see Figure 14).

(a)

(b)

(c)

(d)

Figure 14: Illustration of the performance of the generative autoencoder and
the segmentation algorithm (see Algorithm 1). Left: original image. Center:
generated image. Right: difference between the original and the generated.

The performance of the model is strongly correlated to the
quality of the images. The finer the cracks, the better the image
quality needed to capture all the anomalies. Furthermore, the
post-processing algorithm uses adaptive thresholding, which
determines the threshold for a pixel-based on a small region
around it. This may cause the thinnest lines to be omitted in the
mask generation. In addition, the model is trained using several
types of cells, some of them generate stains and shades when
capturing (e.g. polycrystalline cells, see Figure 14a). Having
a single model to recreate different types of cells makes it less
precise to slight anomalies.

Besides, the thinnest lines may be less prominent when
there is a remarkably large anomaly in the same cell. In other
words, if the cell has only fine cracks or dark areas, the de-
tection may be done correctly (see Figure 14b,14d). However,
when both thin lines and dark areas appear in the cell, the post-
processing algorithm has difficulties binarizing the image pre-
cisely (see Figure 14a,14c). Moreover, the performance of the
segmentation auto-encoder may also affect the quality of the
generated cells, which can contain remaining anomalous fea-
tures that may impact the post-processing algorithm.

7. Conclusions and Discussions

In this work an efficient and automatized pipeline has been
proposed, to detect and locate the finest defects of PV cells. The
detection of such defects is a notable step to prolong the life of
the panels and anticipate massive failures. Although this task
is crucial, the current state-of-the-art detection methods barely
extract low-level information from individual PV cell images,
and their performance is conditioned by the available training
data. The proposed end-to-end deep learning pipeline is able
to detect, locate and segment cell level anomalies from entire
photovoltaic panels via EL images (see Figure 1).

The modularity of the pipeline allows to design and evalu-
ate the three deep learning models separately. The cell detector,
with a precision of 99.36% (AP), shows that the model is highly
reliable and robust. In the case of cell classifier, as mentioned
above, our contribution outperforms the approach of Deitsch
et al. (2018). Although their model has slightly better accu-
racy (0.863), it has been trained and tested on a less complex
dataset (Buerhop-Lutz et al., 2018) with less PV cell variations,
whilst our model has shown similar performance (0.84) in a
more complex dataset on several types of PV cells. Finally,
the anomaly segmentation model has obtained an accuracy of
0.992 (SSIM) in the validation set. Despite the complexity of
the weakly supervised technique and the lack of images, the ob-
tained results show that this approach meets the expected per-
formance. To the best of our knowledge, this is the first work
that proposes a complete end-to-end solution for the detection
and segmentation of cell-level anomalies in PV panels.

The anomaly segmentation module is a novel contribution
for EL images that is capable of finding cracks, micro-cracks,
dead spots, weak areas and weak cells. As weak regions end
up dissipating some of the power generated by the more effi-
cient cells, the detection of such defects is of vital importance
for system integrators, panel manufacturers and cell fabricators.
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Therefore, a pipeline like the one here proposed can help to
raise the quality standards of the PV panels production lines and
can be a key tool for manufacturers to improve cell efficiency.

We plan to extend this work in several directions. First, the
proposed pipeline has been tested on two datasets, with a broad
spectrum of PV cell types and materials. In the event of new
data with distinct domain features, the performance of the pro-
posed method could be compromised, and the most vulnerable
module would be the anomaly segmentation module, since it
learns to generate images directly from the data distribution.
Hence, we will further investigate a way to automatically anno-
tate and integrate unseen data and further enhance the robust-
ness of the model. Second, we intend to expand the pipeline
with more functionalities. For instance, prior to the cell detec-
tion from PV panels, it could be useful to extract the panels
from raw aerial images. In addition, a valuable extension to the
anomaly segmentation module would be a classification mod-
ule that collects more information about the type of anomaly.
These two auxiliary modules would be subject to the availabil-
ity of such data.
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