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Abstract: 

The New York Subway Challenge is a competition where participants must pass through all the New York Subway stations in the 

shortest time possible. Each station has been considered as a node of a graph, and the time needed to travel between stations as the arc 

weights. The main issue of this graph approach has been the systematic generation of subtours, due to the special characteristics of the 

graph and the inability to find proper constraints. In order to deal with this, in this work we propose the creation of the directed line graph 

of the original network. With this procedure and by means of the linear optimization methods, we have found the optimal solution for the 

New York Subway Challenge. 
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1 INTRODUCTION 

The New York City Subway [1] is the largest rapid transit system in 

the world by number of stations. Overall it has 468 stations, 

divided into 24 different lines, with a track length of 1060 

kilometres. Out of curiosity, the average weekday subway ridership 

is 4.7 million, about 1.449 billion a year. 

The Subway Challenge is a competition where participants 

must pass through all the New York Subway stations in the 

shortest time possible. The fastest time to travel to all New York 

City Subway stations is 21 hr 49 min 35 sec and was recently 

achieved by Matthew Ahn (USA) on 16 January 2015. As a matter 

of fact, this record time was confirmed by the Guinness Book of 

Records [2]. 

Officially, there are three Classes of Competition: Class A 

(Covering all lines), Class B (Touching all stations) and Class C 

(Passing all stations). In this work we will focus on the Class B 

competition. The goal of the competition is to set a record 

minimum time by planning a route through the New York City 

Transit System and making a timed run over that route [3]. 

In order to find the optimal path for this problem, a graph 

procedure is presented. Basically, each node stands for a station, 

and each edge represents the connection between two stations in 

one direction.  The cost of activating each arc is related to the 

Euclidean distance between the stations, that is then converted to a 

time measure by way of the mean velocity of the train. 

What we are looking for is the optimal path that passes 

through every node of the graph at least once. Initially, we tried to 

solve this graph by means of Integer Linear Programming (ILP) 

formulation, as done in problems like Traveling Salesman Problem 

(TSP). In this sense, the constraints applied were not enough to 

ensure a good solution. In fact, we had to deal with a systematic 

subtour generation, because if every station has to be visited at 

least once, then there are certain stations that must be visited more 

than once in order to achieve that principle. This is mainly caused 

by the sparse nature of the graph. For example, in a set of stations 

with a final branch off station, we should visit those stations at 

least twice, which in fact is a subtour. Applying the subtour 

constraints to this graph would lead to an infeasible problem, but 

not implementing them would favour the generation of subtours. 

There have been related attempts to solve the Subway 

Challenge. Recently, Wolfgang A. Welz, in the 6th chapter of his 

thesis “Robot Tour Planning with High Determination Costs” [4], 

faced this problem from a similar perspective. He creates a 

“subway graph”, based on three steps: First of all, for each subway 

line the stations are duplicated. The second step is to generate 

directed edges to represent the two possible directions of travelling 

(forward and backward). And finally, include the changing arcs 

between the nodes of each station. With this called “subway 

graph”, he implements three formulations. A TSP transformation, 

a subtour ILP formulation and a flow-based ILP formulation. The 

subtour ILP formulation, which is the one we are interested in, is 

solved with a specific iterative algorithm, varying a subset of 

stations C, which initially is a feasible solution. The subtour 

constraints are applied only for this subset C, meaning that it is 

dynamic formulation. 

The solution we propose relies on the transformation of the 

original graph into its directed line graph. Working with the 

directed line graph allows us to use an easy ILP formulation to 

solve the Subway Challenge. The creation of the directed line graph 

is exhaustively explained in the chapter of “Methods”, but it can be 

summed up on two simple steps. 

First, for each station, we create as many nodes as leaving arcs 

has that station. Each node of the line graph represents an arc of 

the former graph. Since each node belongs to a station and also 

denotes a direction to another station, we must join each node with 

all the nodes of the station it is pointing to. This joining 

corresponds to the second step. With this procedure, the changing 

stations, and also the order, the source and the target of the 

optimal path are obtained.  

There are some differences between our method and the one 

presented by Welz. First of all, what we want is to find the 

optimum path for the challenge, while Welz obtains a tour. If we 

attend to the rules of the challenge, it is obvious that a path is 

much more efficient than a tour. Secondly, we implement a 

different integer linear formulation on a directed line graph, which 

has not been used yet. Our model is them optimized using the 

Branch-and-Bound algorithm in CPLEX [5]. 

In the next section we formally introduce the directed line 

graph creation and mathematical model for the optimization. Then 

we will explain how this model was applied to the New York 

Subway Challenge and the results obtained will be presented too. 

Finally, we will discuss the results and compare them with the 

current record.  
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2 METHODS 

Given a particular subway system, we aim to find a route visiting all 

the stations with the minimum cost. A subway system can be 

modelled as a finite directed graph 𝐺 = {𝑉𝐺 , 𝐸𝐺} (Figure 1A). The 

set of nodes 𝑉𝐺 = {1,2… , 𝑛} represents the different stations in 

the system.  Two nodes are selected as the start and the end of our 

route. The set of arcs are defined as 𝐸𝐺  = {𝑒𝐺  | 𝑒𝐺 = (𝑖, 𝑗),

∀ 𝑖, 𝑗 ∈ 𝑉𝐺  , 𝑑𝑖𝑗 = 1} , where 𝑑𝑖𝑗 = 1 if stations 𝑖 and 𝑗 are 

directly connected together, 0 otherwise. As subway lines are 

typically bidirectional we shall assume that 𝑑𝑖𝑗 = 𝑑𝑗𝑖  . Each arc 

𝑒𝐺 = (𝑖, 𝑗) involves a traversal cost if it is used equal to 𝑐𝑖𝑗, which 

is not necessarily symmetric. 

Technically, the solution to our problem is a walk and not a 

simple path, since, as shown in Figure 1B, we may need to visit a 

station (node) more than once. For example in Figure 1B if the 

start node is node 1 and the end node is node 5 using arcs 

𝑥12, 𝑥23, 𝑥32, 𝑥24 and 𝑥45  will enable us to visit all of the nodes, 

but node 2 will be visited twice. The logic behind our approach is 

that the solution to the subway problem typically will require cycles 

of order 2, as in Figure 1B with the cycle of order 2 visiting node 3.  

With this in mind, the graph G is transformed using the line 

graph operation. We denote 𝐿 = {𝑉𝐿, 𝐸𝐿} the directed line graph of 

𝐺. L is obtained by associating a node with each edge of the root 

graph G and connecting two nodes if and only if their 

corresponding edges in 𝐺 form a path of length 2. 

Specifically, 𝑉𝐿 = 𝐸𝐺 , while  𝐸𝐿 = {𝑒𝐿 | 𝑒𝐿 = (𝑢, 𝑣), ∀ 𝑢, 𝑣 ∈

𝑉𝐿, 𝐷𝑢𝑣 = 1 }. We define 𝐷𝑢𝑣=1 if, assuming that  𝑢 = (𝑖, 𝑗), 𝑣 =

(𝑗, 𝑘), 𝑖, 𝑗, 𝑘 ∈ 𝑉𝐺 , then  𝑑𝑖𝑗 = 1  and 𝑑𝑗𝑘 = 1 so there is a path 

from I to k through j. Each arc 𝑒𝐿 = (𝑢, 𝑣) involves an activation 

cost equal to 𝐶𝑢𝑣 = 𝑐𝑖𝑗 + 𝑎𝑢𝑣, where 𝑎𝑢𝑣 denotes the transition 

time needed (when applicable) for changing subway lines at the 

intermediate station j when using arcs (i,j) and (j,k). Figure 1C 

represents the directed line graph for the root graph in Figure 1A. 

As, in principle, source and target nodes are not fixed, we add 

two artificial nodes S and T to graph L. We define for all nodes in 

L an entering arc from S and a leaving arc to T (with these arcs 

being incorporated into D in a natural way) The cost of these 

auxiliary arcs is 0. With this, as detailed below, we give the 

possibility to the model to select the start and end node without 

adding a significant number of additional variables and constraints.  

Figure 1D represents the final graph L used in this work.  

 

Figure 1: Graph model used for an example subway system 
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Having introduced our graph model for the subway system, we 

have two types of variables in our optimization problem. First, we 

define 𝑥𝑢𝑣 , which takes the value 1 if the arc 𝑒𝐿 = (𝑢, 𝑣) ∈  𝐸𝐿 is 

active, 0 otherwise. Second, we have auxiliary integer variables 𝑤𝑢 

to avoid cyclic solutions, which indicate the order in which each 

node 𝑢 ∈  𝑉𝐿  is visited in our solution.  

The objective function of the model is: 

 minimize ∑ ∑ 𝐶𝑢𝑣𝑥𝑢𝑣 

𝑣∈𝑉𝐿,𝐷𝑢𝑣=1𝑢∈𝑉𝐿

 (1) 

 Our solution is technically a path in L from node S to node T 

satisfying certain constraints. We introduce below these 

constraints. 

An important constraint in our formulation is that we need to 

visit all the nodes in the root graph G, but not necessarily in the 

directed line graph L. For that, we denote 𝐴𝑖 = {𝑒𝐺  | 𝑒𝐺 ∈ 𝐸𝐺 ,

𝑒𝐺 = (𝑖, 𝑗), ∀𝑗 ∈ 𝑉 , 𝑑𝑖𝑗 = 1} the subset of arcs of 𝐺 that leaves 

node 𝑖 ∈ 𝑉𝐺. These subset of arcs in G are nodes in L. 

 ∑

[
 
 
 
 

∑ 𝑥𝑢𝑣

𝑣 ∈ 𝑉𝐿, 

𝐷𝑢𝑣=1 ]
 
 
 
 

∀ 𝑢 ∈ 𝐴𝑖

≥ 1 ; ∀ 𝑖 ∈ 𝑉𝐺  (2) 

We also make sure that, in every node 𝑢 of the graph L, the 

activated arcs entering and the activated arcs leaving are equal.  

 
∑ 𝑥𝑢𝑣

𝑣 ∈ 𝑉𝐿, 

𝐷𝑢𝑣=1

 – ∑ 𝑥𝑣𝑢

𝑣 ∈ 𝑉𝐿, 

𝐷𝑣𝑢=1

= 0 ;  ∀ 𝑢 ∈ 𝑉𝐿| 𝑢 ≠ 𝑆, 𝑇 
(3) 

In the source and target node, S and T, we force one particular 

departure and arrival, respectively: 

 ∑ 𝑥𝑆𝑣

𝑣∈𝑉𝐿

   = 1 ;         ∑ 𝑥𝑢𝑇

𝑢∈𝑉𝐿

   = 1 (4) 

We may fix the source and/or the target node if required. For 

example, if we are interested in selecting the node 𝑖 ∈ 𝑉𝐺 as source 

node, we only need to add the constraint below. Fixing the target 

node is similar.  

 ∑ 𝑥𝑆𝑢 = 1

∀ 𝑢 ∈ 𝐴𝑖

 (5) 

Finally, we need to avoid the creation of subtours. We use 

standard constraints for that:  

𝑤𝑢 − 𝑤𝑣 + (|𝐸𝐺| − 1) ∙ 𝑥𝑢𝑣 ≤ (|𝐸𝐺| − 2)    ∀ 𝑢, 𝑣 ∈ 𝑉𝐿  (6) 

where |𝐸𝐺| represents the cardinality of 𝐸𝐺 , i.e. the number of 

edges in graph G. 

 

3 RESULTS 

Applying this model to the New York Subway System requires the 

original graph to be assembled. The initial data was obtained from 

the MTA (Metropolitan Transportation Authority) webpage, 

specifically from the “Developer Resources” section [6].  

There a GTFS package [7] was downloaded, which is intended 

for phone apps development. For the graph creation we focused in 

the text file “stops.txt”, where among other data, the index of 

terminals and their latitude and longitude is specified.  

Making use of this data, the Mercator projection was used to 

plot the latitude and longitude of each terminal into a map (Figure 

2). 

 
Figure 2: Position of the NY subway terminals 

Having the nodes of the graph, we could not find any 

information to generate the edges of the graph. To do so, we had 

to introduce manually the lines that belonged to each terminal. So 

as to get the edges, we worked with the set of terminals of each 

line, creating the complete graph of those nodes. Then, we applied 

the minimum spanning tree (MST) to the complete graphs of each 

line, and we obtained the real edges of the graph, due to the 

straight configuration of the lines. Finally, we had to duplicate all 

the edges, in order to get the return path for the trains. The figure 

3 illustrates the final graph G, with each line represented by a 

different colour.  

 
Figure 3: Creation of the subway network, using the MST. 

In order to minimize the computational cost of the resolution 

of the problem, some simplifications were implemented to the 

subway system model: 

- There are some terminals that are so large, that they gather 

different lines and are located in different positions. In our 

model we consider two separate terminals. 
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- There are some express lines that do not stop in all the 

terminals at rush hours. In our case we avoid these special 

lines. 

- We do not consider the walkway between terminals. 

- There is an island in the system, Staten Island, and we 

replace the actual ferry with a fictitious line. 

The weights of the edges are actually the Euclidean distances 

between terminals. However, what we look for is the fastest path, 

so length is turned into time using the mean velocity of each line.  

The mean velocities (in miles per hour) of the lines is obtained 

from the figure 4 [8].  

 
Figure 4: Mean speed of the lines, in miles per hour. 

Selecting where to start is a critical decision. As it has been 

explained in the methods section, the selection of the source and 

the target node is included in the model itself. From the optimality 

point of view, it makes sense to start and to finish in a branch off 

terminal. Otherwise more terminals should be visited to finish in a 

intermediate station. 

In the directed line graph 𝐿 of New York there are 1078 nodes, 

24 of them branch off terminals. Among these 24, the outermost 

ones should be the source and the target. 

To support the source and target election by the model, the 

shortest path tree (SPT) between these terminals has been 

calculated. The path that takes more time should contain the 

optimal source and target. In the following table, a summary of 6 

of these paths has been included, considering the outermost four 

terminals in the map (Figure 5).  

 

The longest SPT is between Tottenville and Far Rockaway, 

which are in fact the two nodes that our model selects 

automatically.  

 
Figure 5: Candidates for the source and target terminals. 

The model has been solved using CPLEX 12.5 on a Intel i5-

6300U CPU at 2.4 Ghz. The optimal solution for the New York 

Subway Challenge is shown in the appendix A, where a table with 

the final path is described. Along with the start and destination 

terminals, the line used and the time spent in each journey has been 

included. 

The total riding time has been of 1273 minutes (21 hours and 

13 minutes), which means that the current Guinness Record is 

beaten. Obviously, even if is the time travel estimation is good, is 

nearly impossible to build an exact and precise model such as the 

real system subway, that for example has a well defined timetable. 

Therefore the comparison between our solution time and the 

record is purely anecdotal. 

As a kind of curiosity, in this solution there are some terminals 

that are crossed multiple times. As a matter of fact, the most visited 

stations are the “Broadway Junction”, “Atlantic Av-Barclays Ctr”, 

and “14 St-Union Sq.”, that are visited four times. These are the 

network´s most relavant stations, due to their high connectivity.  

 

4 CONCLUSIONS 

The computational cost of the model is high, due to the size of 

the subway and moreover due to the number of lines, which 

expands the number of possible paths. In fact, in the first stage of 

this work, when the graph was created and the model was 

implemented, only few of the lines were included in the model, in 

order to assure the validity of the formulation. 

With reference to the computational cost, even if the model is 

hard to solve, it is powerful enough to solve other problems, such 

as getting the shortest path between two given terminals. Only by 

removing one constraint, in particular the equation 2, it is possible 

to transform the subway challenge model in the shortest path 

problem. 

In relation with the mentioned terminals in the “Results” 

section, it would be interesting to study the minimum cut set of the 

network, in order to prevent possible failures or maintenance 

services of certain lines or paths in the subway network. 

For future research projects in this matter, it should be noted 

that one of the most important parameters in the model is the time 

required to change from one line to another, that is, the transition 

time 𝑎𝑢𝑣. Its value affects notoriously the solution path and of 

course, the time spent.  

Start Terminal Destination Terminal Time (min) 

A) Tottenville B) Wakefield 241 St 160 

A) Tottenville C) Jamaica 179 St 150 

A) Tottenville D) Far Rockaway 170 

B) Wakefield 241 St C) Jamaica 179 St 113 

B) Wakefield 241 St D) Far Rockaway 155 

C) Jamaica 179 St D) Far Rockaway 91 
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In order to take this fact fully into account, a slight 

modification was implemented in the model. The actual model is 

not able to detect all the line changes in the solution. Therefore, 

instead of simply using the directed line graph, more information 

had to be included in the 𝑥𝑢𝑣 variable, in order to know which line 

was using in that path. Hence, the 𝑥𝑢𝑣𝑝 variable was necessary, 

with 𝑝 representing the line used. This little change increased 

notoriously the size of the graph, making so hard to solve with 

CPLEX and the present computer resources. As result, only a 

reduced size of the subway system was solved, involving 6 of the 

25 lines. 

In this sphere of the transition time, two lines of research are 

proposed. First of all, the study of a metaheuristic method to 

facilitate the resolution of the model. Second, due to the special 

characteristics of the subway system, a method to reduce the 

number of nodes would be appropriate, making easier the 

resolution as well. Having included those changes, the influence of 

the transition time could be calculated.  

Additionally, a more complex model of the system could be 

carried out, by including the timetables of the trains for each 

terminal. In this way a much more complete and precise model of 

the network could really help beating the New York Subway 

Challenge. 

To sum it up, this work has been developed in the frame of 

linear optimization, using only CPLEX. The mathematical 

formulation exposed in the “Methods” section is usually applied in 

many graph-based problems, such as the famous “Travelling 

Salesman” problem. However, with the implementation of the 

directed line graph, a different perspective of this mathematical 

formulation has risen up. 
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APPENDIX A 

- Optimum Path Solution Table 

Start_Terminal Line Destination_Terminal Time(min) Start_Terminal Line Destination_Terminal Time(min)

Tottenville' SIR South Ferry Loop' 62 8 Av' L 14 St - Union Sq' 750

South Ferry Loop' 1 Chambers St' 67 14 St - Union Sq' N Times Sq - 42 St' 755

Chambers St' 2 Wall St' 69 Times Sq - 42 St' 1 Van Cortlandt Park - 242 St' 799

Wall St' 2 Chambers St' 72 Van Cortlandt Park - 242 St' 1 168 St - Washington Hts' 816

Chambers St' 1 Times Sq - 42 St' 85 168 St - Washington Hts' A Inwood - 207 St' 824

Times Sq - 42 St' 7 Grand Central - 42 St' 87 Inwood - 207 St' A 168 St - Washington Hts' 832

Grand Central - 42 St' 4 86 St' 95 168 St - Washington Hts' C 145 St' 837

86 St' 6 125 St' 103 145 St' B Bedford Park Blvd' 855

125 St' 4 138 St - Grand Concourse' 105 Bedford Park Blvd' D Norwood - 205 St' 856

138 St - Grand Concourse' 5 149 St - Grand Concourse' 107 Norwood - 205 St' D 145 St' 876

149 St - Grand Concourse' 2 Central Park North (110 St)' 115 145 St' A 125 St' 879

Central Park North (110 St)' 2 135 St' 120 125 St' B 7 Av' 893

135 St' 3 Harlem - 148 St' 123 7 Av' E W 4 St' 901

Harlem - 148 St' 3 135 St' 125 W 4 St' B Grand St' 905

135 St' 2 E 180 St' 142 Grand St' B Broadway-Lafayette St' 907

E 180 St' 5 Eastchester - Dyre Av' 156 Broadway-Lafayette St' F Essex St' 909

Eastchester - Dyre Av' 5 E 180 St' 170 Essex St' J Broad St' 916

E 180 St' 2 Wakefield - 241 St' 188 Broad St' J Essex St' 922

Wakefield - 241 St' 2 149 St - Grand Concourse' 220 Essex St' F Jay St - MetroTech' 929

149 St - Grand Concourse' 5 138 St - Grand Concourse' 221 Jay St - MetroTech' R DeKalb Av' 930

138 St - Grand Concourse' 4 Woodlawn' 242 DeKalb Av' B 7 Av' 934

Woodlawn' 4 125 St' 265 7 Av' B Atlantic Av - Barclays Ctr' 936

125 St' 6 Pelham Bay Park' 295 Atlantic Av - Barclays Ctr' 2 Flatbush Av - Brooklyn College' 951

Pelham Bay Park' 6 Grand Central - 42 St' 340 Flatbush Av - Brooklyn College' 2 Franklin Av' 961

Grand Central - 42 St' 7 Court Sq' 348 Franklin Av' 3 New Lots Av' 977

Court Sq' G 21 St' 349 New Lots Av' 3 Clark St' 1004

21 St' G Court Sq' 351 Clark St' 3 Atlantic Av - Barclays Ctr' 1009

Court Sq' 7 Queensboro Plaza' 352 Atlantic Av - Barclays Ctr' B DeKalb Av' 1010

Queensboro Plaza' N Astoria - Ditmars Blvd' 361 DeKalb Av' R Jay St - MetroTech' 1012

Astoria - Ditmars Blvd' N Queensboro Plaza' 370 Jay St - MetroTech' A Canal St' 1020

Queensboro Plaza' 7 Flushing - Main St' 393 Canal St' E World Trade Center' 1022

Flushing - Main St' 7 Queensboro Plaza' 415 World Trade Center' E W 4 St' 1027

Queensboro Plaza' N Times Sq - 42 St' 427 W 4 St' F 21 St - Queensbridge' 1043

Times Sq - 42 St' 7 Grand Central - 42 St' 429 21 St - Queensbridge' F 47-50 Sts - Rockefeller Ctr' 1052

Grand Central - 42 St' 6 14 St - Union Sq' 435 47-50 Sts - Rockefeller Ctr' M Forest Hills - 71 Av' 1086

14 St - Union Sq' L Broadway Jct' 464 Forest Hills - 71 Av' E Briarwood - Van Wyck Blvd' 1091

Broadway Jct' C Hoyt - Schermerhorn Sts' 480 Briarwood - Van Wyck Blvd' F Jamaica - 179 St' 1098

Hoyt - Schermerhorn Sts' G Greenpoint Av' 502 Jamaica - 179 St' F Briarwood - Van Wyck Blvd' 1106

Greenpoint Av' G Church Av' 539 Briarwood - Van Wyck Blvd' E Jamaica Center - Parsons/Archer' 1110

Church Av' F W 8 St - NY Aquarium' 556 Jamaica Center - Parsons/Archer' E Sutphin Blvd - Archer Av - JFK Airport' 1111

W 8 St - NY Aquarium' Q Prospect Park' 582 Sutphin Blvd - Archer Av - JFK Airport' J Broadway Jct' 1134

Prospect Park' W Park Pl' 585 Broadway Jct' L Canarsie - Rockaway Pkwy' 1144

Park Pl' W Prospect Park' 588 Canarsie - Rockaway Pkwy' L Broadway Jct' 1153

Prospect Park' Q Coney Island - Stillwell Av' 615 Broadway Jct' J Marcy Av' 1167

Coney Island - Stillwell Av' N 59 St' 635 Marcy Av' J Myrtle Av' 1172

59 St' R Bay Ridge - 95 St' 643 Myrtle Av' M Middle Village - Metropolitan Av' 1185

Bay Ridge - 95 St' R 36 St' 656 Middle Village - Metropolitan Av' M Myrtle Av' 1198

36 St' D Bay 50 St' 676 Myrtle Av' J Broadway Jct' 1206

Bay 50 St' D 36 St' 696 Broadway Jct' C Euclid Av' 1213

36 St' R 14 St - Union Sq' 725 Euclid Av' A Ozone Park - Lefferts Blvd' 1222

14 St - Union Sq' 6 Brooklyn Bridge - City Hall' 732 Ozone Park - Lefferts Blvd' A Broad Channel' 1244

Brooklyn Bridge - City Hall' 4 Bowling Green' 735 Broad Channel' S Rockaway Park - Beach 116 St' 1251

Bowling Green' 4 14 St - Union Sq' 743 Rockaway Park - Beach 116 St' S Broad Channel' 1259

14 St - Union Sq' L 8 Av' 747 Broad Channel' A Far Rockaway - Mott Av' 1273

 

 


