
Labelling Drifts in a Fault Detection System for
Wind Turbine Maintenance
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Abstract A failure detection system is the first step towards predictive maintenance
strategies. A popular data-driven method to detect incipient failures and anomalies is
the training of normal behaviour models by applying a machine learning technique
like feed-forward neural networks (FFNN) or extreme learning machines (ELM).
However, the performance of any of these modelling techniques can be deteriorated
by the unexpected rise of non-stationarities in the dynamic environment in which
industrial assets operate. This unpredictable statistical change in the measured vari-
able is known as concept drift. In this article a wind turbine maintenance case is
presented, where non-stationarities of various kinds can happen unexpectedly. Such
concept drift events are desired to be detected by means of statistical detectors and
window-based approaches. However, in real complex systems, concept drifts are
not as clear and evident as in artificially generated datasets. In order to evaluate the
effectiveness of current drift detectors and also to design an appropriate novel tech-
nique for this specific industrial application, it is essential to dispose beforehand of
a characterization of the existent drifts. Under the lack of information in this regard,
a methodology for labelling concept drift events in the lifetime of wind turbines
is proposed. This methodology will facilitate the creation of a drift database that
will serve both as a training ground for concept drift detectors and as a valuable
information to enhance the knowledge about maintenance of complex systems.
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1 Introduction

The prevailing competitive marketplace demands companies from asset-intensive
industries to create cost-efficient processes, both in manufacturing and in mainte-
nance. Unforeseen breakdowns not only can cause expensive downtime, but also
safety and environmental detriments that may lead to injuries or fatalities, as well
as enormous legal expenses. In this sense, the ability to forecast machinery failure
is vital for reducing maintenance costs, operation downtime and safety hazards. It is
therefore essential to develop failure detection techniques to monitor the health of
a system, which are encompassed in Condition Based Maintenance (CBM) strate-
gies [1, 2] and more recently, in prognostics and health management (PHM) [3–5]

A failure management system consists of several interrelated modules. [6] At
first, failure prone situations are identified, using a continuous measure that judges
the current situation as more or less failure prone; this is known as the failure de-
tection stage. Then, after failure detection, the diagnosis stage is invoked, in order
to find out where the error is located and where its root cause may be. Once the
diagnosis is completed, maintenance actions are scheduled.

This article focuses in the failure detection module, which provides real-time
monitoring of industrial processes by forecasting machinery health based on condi-
tion data and predicting possible incipient failures. Several industrial sectors have
adopted these type of systems to improve their maintenance processes and to man-
age their assets more effectively. In particular, we are interested on applications to
the maintenance of wind turbines, where various strategies have already been devel-
oped. [7, 8]

Technical approaches for building models in incipient failure detection systems
can be categorized broadly into data-driven, model-based, and hybrid approaches.
More details regarding the mentioned techniques can be found at [9]. This study
deals with a pure data-driven approach, where information coming in real-time from
different sensors is taken into account, and detection of possible anomalies is pro-
vided after learning the normal and expected behaviour from the industrial assets.

By using data sources, different strategies can be followed to build normal be-
haviour models, such as stochastic models, machine learning algorithms, Bayesian
and fuzzy classifiers, time series prediction or pattern recognition. In the analyzed
failure detection system a state-of-the-art neural network, Extreme Learning Ma-
chine (ELM), has been applied, due to its ability to easily model dynamic non-linear
behaviours [10], and also because of its wide use in the prognostics of industrial sys-
tems and wind turbines [11–16]

Whatever the selected model may be, an initial training batch is necessary for
learning relationships between variables. Taking a feed-forward neural network as
example, the network is trained with an historical data set, a fixed and static infor-
mation about the past events of the system. By comparing the expected behaviour
with its real and current functioning, both a normal behaviour deviation degree as
well as an estimation certainty degree are obtained. These are used to recognize
an anomaly, which afterwards can be related to a known failure mode. [17] These
failure detection strategies are based on the hypothesis that any asset should behave
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similarly under resembling conditions, concluding that a deviation from the model
should speak for a symptom of dysfunction.

However, the performance of any of these modelling techniques can be deteri-
orated by the unexpected rise of non-stationarities in the dynamic environment in
which industrial assets operate. Unpredictable statistical changes in the measured
variable are desired to be detected by means of statistical detectors and window-
based approaches. In order to evaluate the effectiveness of current detectors and also
to design an appropriate novel technique for an specific wind turbine maintenance
application, it is essential to dispose beforehand of a characterization of the existent
drifts. Under the lack of information in this regard, in this article a methodology for
labelling concept drift events in the lifetime of wind turbines is proposed.

Having introduced the necessity for predictive maintenance and failure detection
systems on Sect. 1, the rest of the article is structured as follows: the irruption of
non-stationary data in failure detection systems is explained on Sect. 2, along with
the main adaptation techniques to this issue. On Sect. 3, an expert-based platform
for drift labelling is described. Finally, Sect. 4 presents the main conclusions and
paths for future work and improvement.

2 Non-stationary Data in Traditional Machine Learning

One of the problems that arise from the presented failure detection systems is that
data is expected to be independent and identically distributed (i.i.d) along all the
lifetime of the asset [18]. Unfortunately, in real industry applications, this assump-
tion does not often hold true. In fact, due to the non stationarity in the monitored
variables of the assets, the normality models need to be checked periodically and
actions need to be taken to adapt to the new normality [19].

Regarding failure detection systems, the non stationarity can be due to multiple
causes, such as sensors recalibration, replacement of a component during a correc-
tive maintenance intervention, the wearing of some mechanical component, etc. The
causes of the non-stationary data are critical to decide whether to take actions or not.
Yet, model adaptation should only occur if the detection quality is seriously affected.
An illustrative example can help understand this issue: the wearing of components
or the lost of efficiency represent events that are desired to detect by studying de-
viations from the normality model, implying that the model should not be updated.
Unfortunately, the representation of these events vary enormously from asset to asset
and from time to time. This high variability implies some difficulties to find patterns
that help to differentiate between a need-to-update situation and a maintain-model
one.

Even though failure prediction systems are very vulnerable to non-stationarities,
at the moment this issue being solved with human supervision. However, companies
are monitoring more and more assets each year, and they are starting to reach up to
a point where a manual checking is unfeasible. As an example, the recreation of
the normal wind turbine operation can consist of about 10 models of subsystems
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or critical parts of the wind turbine. For 1.000 wind turbines, an architecture of
10,000 normal behaviour models would be managed. Moreover, taking into account
current trends, with more wind farms being installed worldwide each year, it is
necessary to include an automated system that guarantees the normality of each
model for the current situation. This automated system would reduce as much as
possible the human intervention in the system, thus allowing the scalability of the
detection technology.

2.1 Concept Drift Theory

Current artificial intelligence and machine learning based applications live under the
assumption that the systems they predict are static and stationary [18], neglecting
that in reality, the world and the data generating processes are often dynamic and
non-stationary. Unexpected changes in the environment or perturbed, incorrect and
missing data can statistically detach the measured variable from the monitored fea-
ture, inducing to wrong decisions. Moreover, the spreading of online deployments
with learned models gives increasing urgency to the development of efficient and
effective mechanisms to address learning in the context of non-stationary distribu-
tions, or as it is commonly called concept drift [18–23]. Hence, concept drift can
be defined as the unpredictable statistical change in measured variables, making the
static and time-invariant model useless.

A concept is statistically defined on the literature [18] as the joint probability dis-
tribution of predictors (independent) variables and response (dependent) variables
at a given period t: Concept = Pt(X ,Y ) , where X denotes a random variable over
vectors of predictor values, and Y represents a random variable over the output or
response. A concept drift occurs whenever a pair of periods of time t and u depict
different joint distributions: Pt(X ,Y ) 6= Pu(X ,Y ). According to Bayesian theory, a
change in the joint probability distribution can occur due to a change either in the
prior probability distribution Pt(Y ), in the class conditional probability distribution
Pt(X |Y ), or in the posterior probability distribution Pt(Y |X).

There is the implicit assumption that drift occurs over discrete periods of time,
bounded before and after by stable periods without drift [20]. Under this assumption,
the speed of drift can be quantified [18] as sudden if there is a sharp boundary, as
gradual if the transition is smooth, and reoccurring if drifts repeat over time.

A quantitative characterization of drifts can be found in [20]. These measure-
ments would help to create a taxonomy of drifts for a given application. Here the
most relevant measures of drift are summarized:

Magnitude Distance between the concepts at the start t and end u of the period
of drift. The metric used is usually the Hellinger Distance or the
Total Variation Distance.

Magnitudet,u = D(t,u) (1)
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For example, the Hellinger Distance H is a metric that measures the
difference between two probability distributions P and Q, and can
be defined as:

HP,Q =
1√
2
||P−Q||2 (2)

Duration The elapsed time over which a period of drift occurs. This measure-
ment is critical for the differentiation of a fault an a concept drift.

Durationt,u = u− t (3)

Path Length Length of the path that the drift traverses during a period of drift, i.e.
the sum of the drift magnitude between pairs of consecutive points.

PathLent,u = lim
n→∞

n−1

∑
k=0

D
(

t +
k
n
(u− t), t +

k+1
n

(u− t)
)

(4)

2.2 Adaptation Techniques

Under the presence of concept drift, passive or active solutions are available in or-
der to prevent a loss of performance in the detection quality or in the prediction
accuracy. On one hand, passive strategies continuously adapt the model without the
need of detecting a change. They aspire to maintain an up-to-date model at all times,
either by retraining the model on the most recently observed samples, or by enforc-
ing an ensemble of classifiers [24]. As the stability-plasticity dilemma defines, a
single-classifier model is not able to retain existing knowledge and at the same time
learn new information, so ensembles of classifiers are usually put to work. [25] En-
sembles continuously update the weights of the fusion rule or create and remove
models from the pool, being more accurate than single-classifier models, and easily
incorporating new data or forgetting irrelevant knowledge.

However, in a failure detection system, the prediction accuracy is expected to
decrease when a failure appears, and thus the objective is not to improve the per-
formance, but to preserve the detection quality. In addition, passive adaptation tech-
niques allow the normality model to learn from anomalies and failures as well, thus
expanding the decision boundary and reducing the detectability of the system. Con-
sequently, passive solutions should be discarded for failure detection applications,
and active solutions should be preferable.

Active solutions rely on triggering mechanisms, that is, detection methods that
indicate whether a drift has occurred or not based on a change in the statistics of
the data-generating process. Change-detection tests [26–31] can be triggered either
by monitoring the distribution of unlabeled observations or by a change in the pre-
diction performance of the model. Whatever the monitored signal may be, these
methods explicitly localize the change point in time, and invoke the substitution of
the model with a new one, trained with recent data, that maintains the prediction
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accuracy and the overall detectability. In this article the attention is onto the active
detection of concept drifts, whereas posterior actions, such as the retraining of the
model are not studied.

3 Proposed Methodology: Drift labelling

Failure detection technologies that take into consideration deviations from normal
behaviour models will suffer from the concept drift problem as time passes on. This
maintainability problem of failure detection technologies is in fact a reality in in-
dustrial applications. Appropriate adaptation techniques to tackle concept drifts can
only be designed if there is a previous knowledge of the types of drifts that can
appear. Therefore, this research rises from the current lack of knowledge regarding
drift detection in real industrial assets, where a taxonomy of drifts is hard to discern
and theoretical drift detectors have unknown performances.

In order to address the problem of normality changes in the performance of com-
plex systems this article proposes a methodology for the identification, record keep-
ing, and posterior classification of drifts in the specific case study of wind turbines
maintenance. The result is the development of a platform that allows experts to cre-
ate a reference dataset of behaviour changes in the normal performance of wind
turbines. This will serve as training ground for the posterior classification of such
changes, and also to test the effectiveness of those detectors in drift situations. At
the same time, this will enhance the knowledge about the operation of the wind
turbines, and as a consequence, the improvement of the applied failure detection
systems.

3.1 Platform Overview

The process starts by collecting data from the wind turbines. In this regard, the oper-
ating and environmental conditions of virtually all wind turbines in operation today
are recorded by the turbines’ supervisory control and data acquisition (SCADA)
system in 10-minute intervals [32]. The number of signals available to the turbine
operator varies considerably between different manufacturers as well as between
generations of turbines by the same manufacturer. The recreation of the normal
wind turbine operation can consist of 10 models of critical parts, each of them mon-
itoring a known variable. In this article the wind turbine’s power model is illustrated
as example (Fig. 1), where the ambient temperature, the wind speed and the wind
turbulence act as predictors. These variables are available in almost all SCADA sys-
tems.

As was stated on Sect. 2.1, drifts can take diverse forms (sudden, gradual...)
and appear on any variable (inputs, output). The proposed method tries to identify
changes in the posterior probability distribution Pt(Y |X), that is, in the output-inputs
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Fig. 2 Overview of the multi-expert platform. Experts label periods of drift on the ensemble resid-
ual. Each ELM model contributes to the ensemble, and is trained with an independent batch.
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relationship, since those changes directly affect the performance of the failure detec-
tor. Therefore, the normal behaviour model residual —difference between the actual
power and the predicted one— will be shown to the expert.

In order to automatize the labelling, an interactive web platform has been devel-
oped using the Shiny package in R. This platform shows the model residual as a time
series, and experts are allowed to label any drift or event by dragging the desired pe-
riod on the chart. The selected period is then classified, based on the severity of
the drift and the possible causes (sensor mis-calibration, maintenance action, power
limitation, etc.). Each time a period is labeled, it will be visualized on the chart and
registered on the database, along with the expert-user and model information.

Due to the fact that this platform uses visual inspection to label periods of drift,
the results can be subjected to the expert’s own criteria. In subsequent work, expert’s
opinion will be complemented with information coming from the asset’s maintain-
ers, such as maintenance work orders. In order to evaluate appropriately the effec-
tiveness of the labelling system and reduce this source of uncertainty, redundancy
between multiple experts is proposed. Apart from allowing multiple users to label
the same cases, each user will indicate a qualitative measure of confidence about
their labels.

3.2 ELM Ensemble

Normal behaviour models are created by training a single layer extreme learning
machine (ELM), which has the same topology as a single layer FFNN, with the
difference that the hidden layer weights are not tuned, but randomly assigned. This
slight modification makes ELM training extremely fast, since only output weights
need to be optimized, which is worked out by a simple ridge regression [33]. ELM
have already been used to model the real operation of wind turbines, showing great
generalization properties [13–16]

In order to make the model predictions more robust and trustworthy, an ensem-
ble of models [34] is used rather than an individual model. Each model from the
ensemble is trained with a different batch of data, which will avoid two issues:

• On one side, the training data can contain failures and behaviour changes, which
should not be learned. Rather than selecting a fault-free training set, the gener-
alization capability of the weighted combination of individual models will au-
tomatically not learn anomalies and features that rarely appear, but the general
behaviour, also guaranteeing a low validation error.

• On the other side, when a subset of the whole data is used as training set, it is
possible that it may not completely represent the entire numerical space of the
variables. A model should only predict the response when there is enough cer-
tainty about the inputs, otherwise the estimation may not be reliable. An example
of such situation can be seen with the ambient temperature, where a clear trend
occurs along the year. The entire year should be selected in order to cover all
temperature values and make certain predictions.
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The residual calculation process has been illustrated on Fig. 1 . Each individual
ELM model is trained with a fixed size batch. A random sample of the batch is used
for validation, whereas the remaining trains the model. The rest of the dataset is first
filtered by certainty to the training set, and then is passed to the model to predict the
response. The certainty filter makes sure the inputs are known to the model. This
process is repeated for each batch, as has been represented on Fig. 2, thus obtaining
the ensemble of models, and the combination of residuals, which is shown to the
experts.

3.3 Preliminary Results

A comparison of the labelled periods of drift with the triggering of some active
detectors has been included in Table 1. A group of 4 experts labelled events from
98 wind turbines ranging 3 years of data. Overall, the experiment showed that even
though detectors match the manually labelled periods, captured by a high sensitivity,
low precision results put into evidence that detectors trigger when other type of drifts
happen or when a noisy signal undermines the performance of the detectors.

ADWIN CUSUM GMA HDDM A HDDM W PH SEED SeqDrift1 SeqDrift2 STEPD
Precision 0.422 0.408 0.571 0.304 0.432 0.413 0.370 0.412 0.519 0.261
Sensitivity 0.711 0.816 0.316 0.737 0.500 0.684 0.789 0.737 0.737 0.816

Table 1 Precision and sensitivity of other detectors on manually labelled periods, which are as-
sumed to be the true condition.The bold numbers indicate the maximum of each metric.

The detectors were implemented using MOA, an open-source framework [35]
for dealing with massive evolving data streams. The optimal parameters for each
detector were extracted from the article by Gonçalves et. al [26]. The definition for
the tested detectors can be found in [18, 26–31].

4 Conclusions and Further Work

In this article, a methodology for the identification, record keeping, and posterior
classification of drifts in a wind turbine maintenance case has been presented. In
real complex systems, normality changes are not as clear as in artificial datasets,
so it is difficult to implement active adaptation techniques, such as drift detectors.
By following the proposed method, a database of behaviour changes can be created
with the help of experts, serving both as a training ground for concept drift detectors
and as a valuable information to enhance the knowledge of complex systems.

In addition, with this novel method, different types of drifts – sudden, gradual,
recurrent – can be classified with a certain degree of objectivity. From the obtained
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labels, drift features such as magnitude, duration and path length can be estimated
as well.

As was stated on Sect. 1, the problem of concept drift can be found in any failure
prediction system that uses deviations from a normal behaviour model to identify
incipient failures. The methodology explained on Sect. 3 has only been applied to a
wind farm maintenance case. This methodology should be easily extended to other
complex systems where no information about the possible behaviour changes exists.

After obtaining the characterization of drifts, the effectiveness of current drift
detectors has been evaluated for this specific industrial application. A future line of
research will focus on the design of novel drift detection techniques, to be tested in
real-world environments with the purpose of improving the quality of the current
drift detectors, tested in Section 3.3. In this way, an ensemble of detectors [36–39]
could provide robustness in real life applications, where the representation of drift
events vary enormously from asset to asset and from time to time. Just like individ-
ual classifiers are limited by the stability-plasticity dilemma, a single detector is not
able to discern several types of drifts. In fact, most concept drift detectors found on
the literature are based on assumptions about the distribution of the variables and
try to identify changes whenever their stated hypothesis do not hold true.
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