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Abstract 

The reed is one of the most important elements that 

form a clarinet, and its geometry is the key to the 

correct production of the sound. This study pretends 

to investigate the influence of the geometry of the 

reed in the acoustics of the clarinet. First a 

theoretical model (Four-Pole Method) is used to 

study the acoustic performance of the clarinet. Then, 

an acoustic model has been created and a parametric 

modal analysis of the reed has been carried out. The 

obtained simulations have been validated by means 

of experimental data from a real Bb clarinet. 

Moreover, an harmonicity study was performed out 

the experimental data. 

La lengüeta es uno de los elementos más importantes 

del clarinete, y su geometría es crucial para la 

correcta producción del sonido. Este trabajo pretende 

comprender la influencia de la geometría de la 

lengüeta en la acústica del clarinete. Se ha partido de 

un modelo teórico (Four-Pole Method) para estudiar 

el rendimiento acústico del clarinete. Posteriormente 

se ha modelado acústicamente el clarinete y se ha 

realizado un análisis modal paramétrico de la 

lengüeta. Las simulaciones realizadas se han 

validado por medio de datos experimentales con un 

clarinete Bb real, del que se ha realizado un estudio 

de armonicidad. 
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I. INTRODUCTION 

This research attempts to understand the mode of operation 
of the clarinet, to obtain the waveform of the clarinet and study 
the reed from the point of view of vibrations. 

The clarinet is a woodwind instrument that uses a reed to 
induce vibrations in the air column and make sound. The reed 
is made out of an elastic material called Arundo Donax, a 
variety of cane. This reed is attached over the window of the 
mouthpiece where the clarinetist blows air into the system. As 
the clarinet is played, a pressure antinode forms in the 
mouthpiece, which makes the clarinet similar to a pipe closed 
at one end and open at the other. [1] 

The B-flat clarinet is about 60 cm long and has a range of 
more than three octaves. Different notes containing several 
harmonics are produced by opening and closing various tone 
holes along the bore of the instrument.  

This work will only focus on the production of one musical 
note, specifically on E3 (Mi - 147 Hz). This note corresponds 
with the lowest note that it is possible to play on a Bb clarinet. 

Over the past years several studies about windwood 
instruments, in particular about the clarinet, have been 
developed, mostly focused on the modeling of the clarinet’s 
reed. 

The stated mathematical models for the modeling of the 
reed date from around the 1960s, for instance, the model 
developed by Backus [2]. However, the results of these models 
were limited until the development of the computer systems. In 
the 1980s, the first computer models were implemented, as the 
ones made by Stephen E. Stewart and William J. Strong. These 
studies [3] considered a simplified clarinet by approaching to a  

 

electric power transmission line and its equivalent circuit. 
Among the obtained results, it is possible to find the 
relationship between the pressure and the air flow as well as the 
frequency range of the reed. 

Picard et al. (Analysis of Clarinet Reed Oscillations With 
Digital Fresnel Holography [4]) focuses on the experimental 
measurement of the reed’s vibrations, but a reed model is not 
formed. The test method is based in two ways to excite the 
reed. On the one hand, the excitement is produced by an 
acoustic controlled frequency wave. On the other hand, the 
excitement is produced by an artificial mouth. The 
deformations of the reed are digitally measured by using digital 
Fresnel holograms, and the reed’s natural frequencies are 
obtained from these deformations. 

Other studies, as the one realized by Vasileios 
Chatziioannou and Maarten van Walstijn [5], focus on the 
modeling of the reed considering its anisotropy by using a two-
dimensional model and its numerical resolution. This study 
takes into account the effects of modifying the reed shape and 
the position of the player’s lips. However, has some 
restrictions: it does not consider the effects caused by the non-
linearity as well as an experimental model. 

Some other studies as the ones by P.Taillard [6] et al. 
concentrates in the estimation of parameters that define the 
model of the reed. The holographic system was also used in 
this study. The measured parameters were analyzed statistically 
and compared with the numerical results. The final conclusion 
states that the numerical models are not good enough.  
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So far, the effect of the reed geometry on the sound as well 
as on the tone of the clarinet has not been studied. Therefore, 
this topic will be addressed through this work. First, the 
acoustics in the tube of the clarinet and the influence of the 
geometry of the reed in its own natural frequency are analyzed. 
Subsequently, it is verified that a change in natural frequency 
of the reed linearly affects the frequency perceived by the air, 
and therefore the note played by the clarinetist. 

Therefore, the objectives of this research can be 
summarized as follows: 

- Related to the acoustic in the pipe: 

 To obtain an acoustic model of a clarinet by using 
the commercial software ANSYS. The study 
begins with a open-closed end pipe, based on the  
actual dimensions of a “Conn-Selmer Prelude 
Student Model CL711 Bb Clarinet” 

 To analyze the natural frequencies and the 
vibration modes of the air inside the pipe, 
theoretically (by ANSYS) and experimentally 
(signal acquisition by MATLAB). 

 To compare the natural frequencies obtained both 
theoretically and experimentally. 

- Related to the reed geometry: 

 To obtain the key geometrical parameters of the 
reed. 

 To analyze the natural frequencies and the 
vibration modes of the reed. 

 To study the influence of the geometric parameters 
in the natural frequencies of the reed, by means of 
a sensitivity analysis. 

 To compare the frequency response, first, of the 
reed isolated from the rest of the system, and 
second, of the set reed-tube. 

Consequently, this study will provide data to understand the 
geometry of the reed. 

This article is structured as follows:  

This chapter introduces the acoustics of the clarinet and 
carries out a review of the research works developed so far. In 
addition, the objectives of this project are described. In chapter 
2, the methods section, the applied theory used to perform this 
work is presented: acoustic theory, modal analysis, harmonic 
response, the four-pole transmission line method, etc. This 
chapter also includes the designed models of the pipe and the 
reed as well as the process followed in ANSYS. Chapter 3 
presents and discusses the results obtained for the pipe and the 
reed. Conclusions and future works are presented in Chapter 4. 

II. METHODOLOGY 

A. Cylindrical open-closed pipe model 

The understanding of a cylindrical open-closed pipe model 
becomes necessary to understand the modal analysis and the 
frequency response studied in this work. A pipe needs to fulfil 
the following two requirements to perform as a woodwind 
instrument: 

- On the one hand, the stationary acoustic waves formed in 
the pipe must keep a fixed relationship between the vibrations 
modes frequencies of the air column located in the pipe. 

- On the other hand, the highest vibration modes 
frequencies must be approximately an integer multiple of the 
fundamental vibration mode. This restriction largely restricts 
the different pipe shapes that can be used to manufacture the 
woodwind instruments. As this work focuses on the clarinet, a 
cylindrical pipe analysis is adopted as an efficient approach, 
where the symmetry axis corresponds with the X coordinate 
axis, as shown in Fig. 1. 

Considering the equation of the motion of a planar wave in 
the   direction, taking into account both directions [7]: 
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The general solution for this equation is well known: 
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where      ⁄  is the wavenumber,       is the 
circular frequency,   is the frequency of excitation, and    is 
the speed of sound. The volume of acoustic flux per unit of 
area as: 
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Where   is the cross-sectional area, and   is the density. 
With these magnitudes, the acoustic impedance can be defined 
as: 

  ( )  
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Fig. 1. Resonance pressure in a pipe with one end closed: 1st, 3rd ,5th modes  
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Only certain modes of pressure and longitudinal 
displacement waves occur in various air column configurations 
[1]. Since the clarinet is similar to a cylindrical pipe with one 
end open and one end closed, an open-closed pipe, the focus 
for this section will be on this air column configuration. Fig. 1 
depicts the first three modes of displacement and pressure 
waves within an open-closed pipe. The closed end allows for a 
displacement node and a pressure antinode while the open end 
allows the opposite. The distance between a node and antinode 
is a quarter wavelength, so that 

       ( ) 

where    is the wavelength for the first wave mode and L is 
the length of the pipe. The fundamental frequency then 
becomes, 
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Using wavelengths and pipe lengths to calculate subsequent 
mode frequencies in terms of the fundamental frequency, a 
pattern develops. The wavelengths become 

    
  

 
 ( ) 

and the corresponding frequencies are 

         ( ) 

where   is an odd integer. Therefore, only frequencies that 
are odd integer multiples of the fundamental are produced in an 
open-closed end pipe [1]. The first mode is referred to as the 
fundamental or first harmonic, which is followed by the third 
harmonic, fifth harmonic, and so on. 

The natural frequencies and mode shapes of undamped 
tubes are listed in Table 1 

TABLE I.  NATURAL FREQUENCIES AND AXIAL MODE SHAPES OF OPEN-
RIGID TUBE 

Configuration Open-rigid 

Schematic 

 

Mode Index            

Natural 

Frequencies     
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Mode Shape          [
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B. Four-Pole Method 

The four-pole is a useful theoretical tool for estimating the 
acoustic performance of tubes.  

An acoustic source, such as the clarinetist air flow, is 
attached to the tube, that has an acoustic impedance and can be 
represented by 4-pole transmission line matrix [8, p. 103]. The 
acoustic source has an impedance   . The end of the acoustic 
duct has a termination impedance    , which in the tube shown 
in Fig. 2, is the radiation impedance of an unflanged duct 
radiating into a free-field. 

 

Fig. 2. Schematic of the 4-pole transmission matrix method. 

The pressure and mass velocity upstream and downstream 
of an element are related by a 4-pole transmission matrix as 
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where    is the acoustic pressure at point   along the 
system. The mass own velocity    is the density of the gas 
times cross-sectional area of the duct times the acoustic particle 
velocity and is calculated as 

           (  ) 

where    is the density of the gas,    is the cross-sectional 
area of the duct at point  , and    is the acoustic particle 
velocity (not the mean own velocity) at point i. 

The 4-pole transmission matrix for a straight segment of 
duct of length L is given by [8, p. 104] 
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The equations describing the response of the system shown 
in Fig 2 can be written as 

 [
  

      
]  [

   

  
] [

  

      
] (  ) 

 [
  

      
]   [

  

      
] (  ) 

 [
  

      
]  [

   

  
] [

 
      

] (  ) 

where the 4-pole transmission matrix [T] depends on the 
configuration of the duct segment. These equations can be 
written in matrix form as 
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The impedance of an unflanged pipe radiating into a free-
field is given by  [8, p. 105] 
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where a is the radius of the duct at the exit,    is the real 
part of the impedance called the resistance, and    is the 
imaginary part of the impedance called the reactance. 

C. Fluid-Structure Interaction Using ANSYS 

The acoustic-modal analysis is similar to the well known 
structural-modal analysis. In fact, a modal analysis can be 
conducted to calculate the natural frequencies and mode shapes 
of an acoustic or structural system, or a combined structural-
acoustic system. It is possible to obtain the frequency response 
in every system’s degree of freedom considering the obtained 
results in the mode analysis. 

The equations of the modal theory are included in the annex 
A, in case the lector would like to make a review. It includes 
the notion of natural frequencies and mode shapes. 

Given that this works englobes both the acoustics theory 
and the modal theory, it is essential to explain the mathematical 
procedure used by ANSYS in order to understand the 
simulations and obtained results. 

The equations of motion for the structure are [8, p.14] 

 ,  -{ ̈}  ,  -* +  *  + (  ) 

where ,  - is the structural stiffness matrix, ,  - is the 
structural mass matrix, *  + is a vector of applied structural 
loads, * + is a vector of unknown nodal displacements and 

hence { ̈} is a vector of the second derivative of displacements 

with respect to time, equivalent to the acceleration of the 
nodes. 

For pressure-formulated acoustic elements, the lossless 
finite element equation for the fluid in matrix form is 

 [  ]* ̈+  [  ]* +  {  } (  ) 

where [  ] is the equivalent fluid stiffness matrix, [  ] is 

the equivalent fluid mass matrix, {  } is a vector of applied 

fluid loads, * + is a vector of unknown nodal acoustic 
pressures, and * ̈+ is a vector of the second derivative of 
acoustic pressure with respect to time. 

The interaction of the fluid and structure occurs at the 
interface between the structure and the acoustic elements, 
where the acoustic pressure exerts a force on the structure and 
the motion of the structure produces a pressure. To account for 
the coupling between the structure and the acoustic fluid, 
additional terms are added to the equations of motion for the 
structure and fluid (of density   ), respectively, as 

 ,  -{ ̈}  ,  -* +  *  +  , -* + (  ) 

 [  ]* ̈+  [  ]* +  {  }    , - { ̈} (  ) 

where , - is the coupling matrix that accounts for the 
effective surface area associated with each node on the fluid-
structure interface. Equations (20) and (21) can be formed into 
a matrix equation including the efects of damping as 
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For harmonic analyses, this equation can be reduced to an 
expression without differentials as 
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The important feature to notice about Equation (23) is that 
the matrix on the left-hand side is unsymmetric and solving for 
the nodal pressures and displacements requires the inversion of 
this unsymmetric matrix, which requires a signifcant amount of 
computer resources. 

D. Clarinet tube model 

For the modal and harmonic analyses in ANSYS the 
clarinet tube part is modeled with the parameters in table 2. 

TABLE II.  TUBE MODEL GEOMETRICAL AND ACOUSTIC PARAMETERS 

Description Parameter Value Units 

Diameter    15 mm 

Length   600 mm 

Speed of sound    343 m/s 

Density    1.21 kg/m
3
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E. Reed Model  

First of all, the existing geometrical parameters [6, p.26] 
were used. After considering different alternatives, a model 
consisted of equations [Annex A] was taken into account, 
identifying the parameters with the limits and the coefficients 
of the functions. These functions were included in Matlab and 
the Fig. 56 was obtained. 

The main problem of this option lies in the difficulty of 
including a geometry defined by points in a solid body, which 
allows the calculation of the natural frequencies and the 
vibration modes. 

Therefore, other options were considered. To facilitate the 
modelling the “Blue Box” reed by Vandoren Paris was taken as 
a reference, and the basic parameters where extracted. 

TABLE III.  REED GEOMETRICAL PARAMETERS 

Parameter 
Measured 

value (mm) 

Value range 

(mm) 

L1 Stock length 35 [11-35] 

L2 Vamp length 32 [20-60] 

R Tip radius 7 [7-14] 

B1 Width at heel 6 [3-11] 

B2 Width at tip 6.5 [3.5-11.5] 

T1 Heel thickness 2.7 [1-4.5] 

T2 Tip thickness 0.1 [0.1-3.6] 

 

 

Fig. 3. Reed 3D representation (a) and its geometrical parameters (b). 

In the last column of the table 3 the range of each parameter 
has been included. This information will be useful for the 
sensitivity analysis that will be introduced afterwards.  

F. Reed Material 

The physical properties of the reed are summarized below. 
The reed is made of the material named Arundo Donax [6, 
p.15], which is considered as an orthotropic elastic material. 

TABLE IV.  REED MATERIAL PROPERTIES 

Elastic Modulus Poisson Coefficient Shear Modulus 

                                   

                                 

                                 

Density:              

 

G. Experimental Data 

The experimental data acquisition has been done by using 
the “Conn-Selmer Prelude Stuent Model CL711 Bb Clarinet” 
as well as MATLAB. 

The elaborated script in MATLAB allows to perform 5 
seconds recording by making use of the computer’s 
microphone. This audio file is filtered by the “Direct Form II 
Transposed” method to avoid possible errors caused by noise. 
After the filtering, the fast fourier transform (FFT) is made and 
the natural frequencies of the signal are identified. 

Given that the most relevant frequency is the one 
corresponding to the first vibration mode, the value of the 
frequency must be perfectly characterized. Therefore, the 
maximum value of the frequency response is identified and a 
first order gaussian fitting is done in a 250 Hz 
range.   Consequently, a gaussian curve which average value 
corresponds to the first natural frequency is obtained. 

In order to validate this experimental data, a musical 
database is considered. This musical database registers all 
possible frequencies of every note. It is important to explain 
that each note corresponds to an only air vibration frequency. 
However, the performed note in the Bb clarinet does not 
correspond with the sounded one. The reason is that the Bb 
clarinet is a transposing instrument. When the note C is played 
in a Bb clarinet, the instrument will actually sound a Bb. 

By making this slight modification, the obtained natural 
frequencies are compared with the database frequencies. The 
note with the closest frequency is obtained, therefore, it is 
verified that the experimental data have been correctly filtered 
and analyzed. The errors between the real frequency and the 
database frequency are small, but this is work does not intend 
to explain these errors. 

These experimental data will subsequently serve to 
compare the clarinet real waveform with the one obtained in 
ANSYS.

(a) 

(b) 
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III. RESULTS 

A. Structural modal analysis of the reed 

The clarinet reed model was based in the “Blue Box” reed by Vandoren Paris. In this analysis a good mesh was essential for the 
goodness of the results (Fig.4). The natural frequencies (Fig. 5-9) and the frequency response with a normal force applied in the 
extreme of the reed (Fig. 10) were calculated using ANSYS.  

Later this FRF will be compared with the one obtained in the complete model. Moreover, the deformation for the first 5 modes 
has been represented in Fig. 5-9.  

 

Fig. 4. Clarinet reed mesh: curvature and proximity advanced size functions 

 

Fig. 5. First mode of vibration of the reed 

 

Fig. 6. Second mode of vibration of the reed 

 

Fig. 7. Third mode of vibration of the reed 

 
Fig. 8. Fourth mode of vibration of the reed 

 
Fig. 9. Fifth mode of vibration of the reed 

 

Fig. 10. Harmonic response of the reed with a normal force applied in the extreme of the reed. 
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B. Sensitivity analysis of the parameters of the reed in its 

natural frequencies 

By making a parametric model of the reed, a sensitivity 
analysis can be carried out (Table 5) by creating some design 
points in ANSYS (Fig. 11). The x axis accounts for the 
modified dimension, and the y axis for the percentage change 
of the natural frequency with respect to the original natural 
frequency (Fig. 12-21). The change in the first mode and in the 
second mode have been calculated, due to their relevance in the 
clarinet acoustics.  

A change in the first natural frequency affects the behavior 
of the clarinet, since it is a critical frequency for the reed and of 
course for the quality of the sound of the clarinet.  

 

Fig. 11. Parametric model of the reed in ANSYS 

TABLE V.  PARAMETERS AND NATURAL FREQUENCIES CORRELATIONS 

Parameters Correlation 

L1 
Critical dimension. High negative correlation with 

both modes (60 % change in frequencies). 

L2 
As L2 increases, the natural frequencies decrease. 

Same as L1. 

R 
An increase from 8 to 10 mm produces a sudden 

change in the frequencies (5%). 

B1 
The initial B1 data represents a maximum in the 

frequency range. Good design. 

B2 
Behavior not clear in the first mode. The maximum 

of the second mode appears in 1.03 times the 

original frequency. 

B1 and B2 
Changing both widths simultaneously produces a 

positive correlation in the frequencies. 

T1 
Increasing the thickness of the heel affects highly the 

frequencies, with a high positive correlation (105 % 

change in frequencies). 

T2 
Opposite behavior in T2. The correlation is negative 

for the first mode, but not so high, 40% changes. 

The second mode remains mostly constant. 

T2 in detail 
Little variations produce a decrease in the 

frequencies, but only of 8 %. 

T1 and T2 
Increasing the overall thickness increases 

considerably the frequencies. Same effect as 

changing only T1. 

 

 
Fig. 12. Reed natural frequencies and L1 [11-35] mm parameter correlation 

 
Fig. 13. Reed natural frequencies and L2 [20-60] mm parameter correlation 

 
Fig. 14. Reed natural frequencies and R [7-14] mm parameter correlation 

 
Fig. 15. Reed natural frequencies and B1 [3-11] mm parameter correlation 
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Fig. 16. Reed natural frequencies and B2 [3.5-11.5] mm parameter correlation 

 
Fig. 17. Reed natural frequencies and B1 and B2 parameters correlation 

 
Fig. 18. Reed natural frequencies and T1 [1-4.5] mm parameter correlation 

 
Fig. 19. Reed natural frequencies and T2 [0.1-3.6] mm parameter correlation 

 
Fig. 20. Reed natural frequencies and T2 [0.01-0.325]mm parameter correlation 

 
Fig. 21. Reed natural frequencies and T1 and T2 parameters correlation 
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C. Acoustic modal analysis of the clarinet tube  

The clarinet tube model is a 0.53 long tube. This model is 
very similar to the complete model, and the results are almost 
identical. Therefore, for this paper only the complete clarinet 
model results will be displayed. 

For future works, it could be appropriate to study the tube 
acoustics for more than one musical note. For that reason, the 
clarinet hole´s position was measured in the real clarinet, and 
introduced in the ANSYS model (Fig. 22). Applying a 0 Pa 
acoustic pressure in one of those holes will reduce the 
wavelength, and thus increase the frequency, creating a 
different musical note. 

 

Fig. 22. Clarinet tube model, with the holes position along the tube 

D. Experimental data 

The audio of the musical note E3 has been filtered and 
characterized with a MATLAB script. In Fig. 23 the original 
and the filtered signal have been illustrated, and in Fig. 24 the 
same data zoomed. The filter has suppressed interfering signals 
and has reduced the background noise. 

 

Fig. 23. Clarinet E3 musical note 5 second recording: original and filtered. 

 

Fig. 24. Clarinet E3 musical note 5 second recording: original and filtered. 

 

The FFT amplitude and phase were also calculated, 
represented in Fig. 25. Then, the modes were identified and 
fitted (Fig. 26). In order to validate the obtained natural 
frequency, a spectrogram of the frequency versus the time was 
represented (Fig. 27), checking of the stability of the modes. 

 

 

Fig. 25. E3 sound signal FFT amplitude and phase angle 
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Fig. 26.  First order gaussian fitting of the first natural frequency. 

 

 

Fig. 27. Spectrogram of the frequency versus the time of the filtered signal 

 

 

E. Theoretical pressure and velocity distributions. 

Using the Four-Pole Method, the pressure distribution along the clarinet cylindrical duct is work out by a script in MATLAB. A 
driving volume velocity is applied at one end and the other end is closed. This results have been obtained using the frequencies of 
the vibration modes of the simulation in ANSYS. It is strongly recommended to compare the pressure distributions for the 1

st
,3

rd
 

and 5
th
 with the Fig. 1 included in the “Methodology” section. 

 
Fig. 28. Pressure and velocity distribution in the tube for the 1st harmonic 

 
Fig. 29. Pressure and velocity distribution in the tube for the 3rd harmonic 

 
Fig. 30. Pressure and velocity distribution in the tube for the 5th harmonic 

 
Fig. 31. Pressure and velocity distribution in the tube for the 7th harmonic 
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Fig. 32. Pressure and velocity distribution in the tube for the 9th harmonic 

 
Fig. 33. Pressure and velocity distribution in the tube for the 11th harmonic 

 
Fig. 34. Pressure and velocity distribution in the tube for the 13th harmonic 

 

 

F. Acoustic and structural modal analysis of the clarinet: 

tube + reed 

The clarinet ANSYS model is a 0.53 meters long tube with 
the designed mouthpiece and the reed coupled in one end. The 
sweep method is used for meshing the tube, and a small 
element size is applied in the reed (Fig. 35). This model 
accounts for the fluid-structure interaction between the reed 
and the air in the rest of the tube. The air in the tube is 
considered as an acoustic body, and an acoustic pressure of 0 
Pa is applied in the free end. Then, a modal simulation and the 
harmonic response of the reed are carried out. 

 

Fig. 35.  Clarinet tube and reed mesh in ANSYS 

 

With this, the pressure distributions for each mode can be 
extracted from ANSYS. The pressure distributions shown  in 
Fig. 36 correspond to the average pressure in each point of the 
axis of the tube. The amplitudes of these modes are not 
representative of the real model, since the simulations have 
been performed without damping, given that the important 
information are the natural frequencies. 

 

Fig. 36. Pressure distributions for the 7 first modes of the air column 
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However, the pressure distributions are useful if are 
normalized. Therefore, after normalizing each mode by their 
maximum value, the Fig. 37 distributions are obtained. 

 

Fig. 37. Normalized pressure distributions for the 7 first modes of the air 
column 

Figures 38-46 include the acoustic pressure for the first 9 
modes found in ANSYS. Within each figure, the corresponding 
mode has been indicated. It must be pointed out the special 
case of the mode number 6. As can be seen in Fig. 43, the 
acoustic pressure does not follow any logical distribution, since 
this frequency corresponds with one of the natural frequencies 
of the reed. The total deformation of the reed in this frequency 
is illustrated in Fig 47. 

 

 

Fig. 38.  Acoustic pressure for the mode Nº 1: (1st mode of the air column) 

 

Fig. 39. Acoustic pressure for the mode Nº 2: (3st mode of the air column) 

 
Fig. 40. Acoustic pressure for the mode Nº 3: (5st mode of the air column) 

 

Fig. 41. Acoustic pressure for the mode Nº 4: (7st mode of the air column) 

 
Fig. 42. Acoustic pressure for the mode Nº 5: (9st mode of the air column) 

 
Fig. 43. Acoustic pressure for the mode Nº 6: (1st mode of the reed) 
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Fig. 44. Acoustic pressure for the mode Nº 7: (11st mode of the air column) 

 
Fig. 45. Acoustic pressure for the mode Nº 8: (13st mode of the air column) 

 
Fig. 46. Acoustic pressure for the mode Nº 9: (15st mode of the air column) 

 
Fig. 47. Total deformation of the reed in mode Nº 6 : (1st mode of the reed) 

After the modal analysis, the harmonic response of the reed was calculated. In this modal analysis only 20 modes were 
explored, the majority of them related to the air column. That is why the harmonic response of the reed with the tube only shows 2 
modes. In Fig. 48, a comparison between the two cases is represented. It can be concluded that the first and the second modes are 
almost coincident in both cases. Therefore, with this result, a change in the natural frequencies of the reed will also change the 
amplitude of the pressure applied in the mouthpiece and therefore in the note played. 

 

 

 

Fig. 48. Harmonic response of the reed with the tube and without the tube. 
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G. Clarinet waveform study 

From the experimental data (Fig. 25) the amplitude    of 
each harmonic can be extracted. The amplitude represents the 
coefficient of the Fourier series, so that the sum of all the 
harmonics makes the final signal and therefore the waveform 
of the clarinet sound. 

 
 ( )       (  )       (   )    

       (   )       (   )    
(  ) 

With this, only a quarter of the wave is calculated, and the 
rest is extrapolated, following a sinusoidal form (Fig. 49). 

 

Fig. 49.  Total sound pressure level along the tube 

In Fig. 24 the waveform of the clarinet was represented. By 
using the data from Fig. 37 and the amplitudes of the Fourier 
series, an estimation of the waveform was developed. In figures 
50 and 51 the comparison between the experimental data wave 
and the ANSYS-Fourier wave is represented, where the 
difference error is not notably high. 

 

Fig. 50.  Pressure level comparison in the tube: Experiment vs simulation 

 

Fig. 51. Extrapolated pressure level comparison in the tube: Experimental data 
vs ANSYS simulation 

H. Inharmonicity study 

Musical instruments such as the clarinet do not exhibit ideal 
harmonics because they have a more complex geometry than a 
cylindrical pipe. Inharmonicity is a measure of the deviation of 
each harmonic from its theoretical frequency. The percent 
deviation   is calculated as follows: 

       (
         

    

) (  ) 

where      is the experimental ratio between two 

consecutive harmonic frequencies and       is the theoretical 

ratio between the same consecutive harmonic frequencies. 

The tables 6 and 7 summarize the natural frequencies 
obtained in the ANSYS simulation and in the experimental 
data. The simulation carried out does no account the even 
modes, only the odd ones, since it is an ideal case. This fact 
was introduced in the first section. 

TABLE VI.  NATURAL FREQUENCIES AND HARMONICITY DEVIATION IN 

ANSYS SIMULATION 

 ANSYS Freq.              

1 146.51 1   

3 439.47 3.000 3.000 -0.01% 

5 732.23 1.667 1.666 -0.03% 

7 1024.7 1.400 1.399 -0.04% 

9 1316.7 1.286 1.285 -0.06% 

11 1608.2 1.222 1.221 -0.07% 

13 1899.2 1.182 1.181 -0.07% 

TABLE VII.  NATURAL FREQUENCIES AND HARMONICITY DEVIATION IN 

EXPERIMENTAL DATA 

 Experimental Freq.              

1 149.2    

2 298.2 2.000 1.999 -0.07% 

3 447 1.500 1.499 -0.07% 

4 596.5 1.333 1.334 0.08% 

5 745.5 1.250 1.250 -0.02% 

6 894 1.200 1.199 -0.07% 

7 1045 1.167 1.169 0.19% 

8 1194 1.143 1.143 -0.02% 

 

With this data, an estimation of the inharmonicity of both 
cases was calculated and represented in figures 52 and 53. It 
must be pointed out that simulation inharmonicity increases as 
the vibration mode increases, while with experimental data 
there is not a clear trend. Even so, the obtained errors are nearly 
negligible, below 0.2%. 

A visual comparison of the odd modes frequencies is 
represented in figure 54, while in figure 55 the percentage of 
error is visualized. In this term, the maximum error is less than 
2%, thus  both data have been certainly well obtained and 
analyzed. 
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Fig. 52. ANSYS simulation inharmonicity deviation in each found mode 

 
Fig. 53. Experiment inharmonicity deviation in each found mode 

 

Fig. 54. Natural frequencies comparison between experimental and simulation 

 
Fig. 55. Natural frequencies percentage error between experimental and 

simulation 

IV. CONCLUSIONS 

With this research an understanding of the mode of 

operation of the clarinet has been gained. Overall, this work 

has studied the reed from the point of view of vibrations. 

 
Paying attention to the objectives introduced at the 

beginning of this article, it can be pointed out that: 

 An acoustic model of a clarinet has been carried out, 

and the model is valid to do a modal analysis, as 

much from the reed as from the air column in the 

clarinet. 

 An modal analysis of the reed has succesfully been 

developed and its harmonic response has been 

obtained. The model has been used for performing 

the expected parametric analysis, from which some 

conclusions can be extracted: 

o First, it must be pointed out that this study has 

been done following one set of parameters, and 

that with other set of them, the results could 

vary slightly. 

o Even so, it is important to stand out the critical 

parameters for the natural frequency of the reed. 

The dimensions L1, L2, T1 and T2 modify 

excessively the value of the natural frequency, 

in a average range of 50%. This fact could 

provoke a highly reduced natural frequency that 

could intersect with the frequency range of 

musical notes. Consequently, the reed could 

enter in resonance if a note frequency is the 

same as the natural of the reed. 

o That is why it has been pointed out previusly 

that the parameter B1 has a good design valur, 

since any other value reduces the natural 

frequencies and complicates the normal 

behaviour of the reed. 

 Regarding the experimental data, these have been 
filtered correctly and the FFT has been properly 
carried out. That is why comparing the theoretical 
results with the experimental ones (Fig.54), the errors 
are so small (Fig.55). 

 However, it must be pointed out thar the theoretical 
model is not able to identify the even vibration modes 
of the air column, due to the fact that ideally these 
modes do not exist, like it has been explained in the 
section 2.A. 

 On the other hand, by means of the theoretical modal 
analysis, the Four-Pole method has been used for 
calculating the pressure and velocity distributions with 
the data from ANSYS. The results have been 
satisfactory, and the comparison between both 
theoretical models, the Four-Pole and the ANSYS 
modes is coherent.  

 From the theoretical modes the aproximate waveform 
of the clarinet sound has been obtained. In the section 
The theoretical simualtion of the modes has been 
used, and by means of the amplitudes of the 
experimental modes, a very similar the waveform to 
the clarinet real one has been obtained. 
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 Finally, it should be noted that after performing the 
study of harmonicity, the experimental data are valid 
and agree with the theoretical ones.  

 

 With all said, this work has verified that the open-closed 
end tube model is apporpiate for simulating the behaviour of 
the clarinet, and that the natural frequencies of the reed are very 
dependent on its geometrical parameters. 

For future work, it is important to point out that this work 
has not be able to relate satisfactorily the value of the natural 
frequency of the reed with the sound created in the clarinet. 

It is true that a change in the natural frequency of the reed 
will vary the behaviour of the reed and the amplitude of its 
deformation. With that, it will also change the volume of air 
that will flow through the space between the mouthpiece and 
the reed and that the pressure in the mothupiece will change as 
well. It can be asserted that the volume of the produced sound 
depends on the oscillation frequency of the reed, but its 
influence in the quality of the sound is set aside for future 
work.  
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VI. ANNEX 

A. Shape of the reed 
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Fig. 56. Parametric reed representation with MATLAB:with points and with surface. 

  

 S0 S1 S2 

x Y=0 Y=4 mm Y=6 mm 

0 0,074 0,08 0,042 

5 0,343 0,293 0,197 

10 0,648 0,542 0,397 

15 1,047 0,847 0,571 

20 1,451 1,735 0,745 

25 1,926 1,527 1,078 

30 2,540 2,084 1,589 

35 3,351 2,817 2,256 
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B. Modal Analysis 

The equations of motion for an acoustic or structural system can be written as 

 (   , -    , -  , -)* +  * + (  ) 

where , - is the mass matrix, , - is the damping matrix, , - is the stiffness matrix, * + is the vector of 
nodal pressures for an acoustic system or displacements for a structural system, and * + is the acoustic or 
structural load applied to the system. For a basic modal analysis, it is assumed that there is no damping and 
no applied loads, so the damping matrix [C] and the load 

vector * + are removed from Equation (1.1), leaving [4, Eq. (17.46)] 

 (   , -  , -)* +  * + (  ) 

For an undamped system, the free pressure oscillations are assumed to be harmonic of the form 

 * +  * +        (  ) 

where * +  is the eigenvector of pressures of the nth natural frequency,    is the natural circular 
frequency (radians/s),   is time. Substitution of Equation (1.3) into (1.2) gives 

 (   
 , -  , -)* +  * + (  ) 

The trivial solution is * +   . The next series of solutions is where the determinant equates to zero 
and is written as [4, Eq. (17-49)] 

 |, -    
 , -|    (  ) 

which is a standard eigenvalue problem and is solved to find the natural frequencies (eigenvalues)    
and mode shapes (eigenvectors) * + .. ANSYS will list results of the natural frequencies    in Hertz, 
rather than circular frequency in radians/s, where 

    
  

  
 (  ) 

C. Harmonic Analysis 

The harmonic response of a system can be calculated using two methods: full and modal summation (or 
superposition). The full method involves forming the mass , -, damping , -, and stiffness , - matrices 
and the loading vector * + of the dynamic equations of motion, combining the matrices, then inverting the 
combined matrix and multiplying it with the load vector to calculate the nodal displacements fug, as 
follows [6]: 

 

, -* ̈+  , -* ̇+  , -* +  * + 

   , -* +    , -* +  , -* +  * + 

(   , -    , -  , -)* +  * + 

* +  (   , -    , -  , -)  * + 

(  ) 

The modal summation method involves the calculation of the mode shapes of a structural or acoustic 
system, and determining what portion of each mode, called the modal participation factors   , contributes 
to the overall response. 


