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Motivation

▶ Temporal misalignment impacts recognition and classification performance
▶ Optimization problem: set of warping functions ϕ that minimize temporal variability
▶ Preference for highly expressive, differentiable and invertible warping functions
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Diffeomorphic Warping Functions

▶ Generated via integration of stationary or time-dependent velocity fields specified
by an ODE with initial condition ϕ(x, 0) = x or the equivalent integral equation:

dϕθ(x, t)

dt
= vθ(ϕθ(x, t)) ←→ ϕθ(x, t) = x +

∫ t

0
vθ(ϕθ(x, τ ))dτ

x : temporal dimension
t : integration time
v : velocity function
θ : parameters
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(a) Continuous piecewise affine velocity function v(x).
Flow integration with initial condition ϕ(x, t0) = x.
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(b) Flow numerical integration: ϕ(x, t + h) = ϕ(x, t) + h · v(x).
Produces increasing functions (invertible 1D functions)

Figure 1. Construction of diffeomorphic curves by integration of velocity functions.

▶ Problem: Neural networks that include diffeomorphic transformations require to
calculate derivatives to the ODE’s solution with respect to the model parameters θ.

dϕθ(x, t)

dt
= vθ(ϕθ(x, t)) −→ ∂ϕθ(x, t)

∂θk
=??

▶ Current solutions
Adjoint sensitivity methods
ResNet’s Eulerian discretization
Ad-hoc numerical solvers + autodiff

Closed-form Diffeomorphic ODE Solution & Gradient

▶ We formulate a closed-form expression for the gradient of 1D diffeomorphic
transformations under continuous piecewise-affine (CPA) velocity functions.

Closed-form ODE solution (forward) ϕθ(x, t)
Closed-form gradient (backward) ∂ϕθ(x, t)/∂θk

ϕθ(x, t) =
(
ψtmθ,cm ◦ ψ

tm−1
θ,cm−1

◦ · · · ◦ ψt2θ,c2 ◦ ψ
t1
θ,c1

)
(x)

ϕθ(x, t) = ψθ(x = xm, t = tm) =

(
xetac +

(
etac − 1

)
bc
ac

)
x=xm
t=tm

▶ A closed-form solution provides efficiency, speed and precision.

Fast computation for iterative gradient descent methods
Exact gradient leads to better solutions at convergence
Shortens chain of operations and decreases tape overhead
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Figure 2. Velocity functions v(x). Each cell Uc in the
tessellation P defines an affine transformation
Ac =

[
ac bc

]
∈ R1×2.
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Figure 3. Iterative process of integration: starting at
initial cell c1 and time t1 = 1, several cells are crossed
and the process finishes at cell cm and time tm.

Results: Performance

▶ DIFW library: optimized implementation of 1D diffeomorphic transformations
for CPU (NumPy and PyTorch with C++) and GPU (PyTorch with CUDA)

▶ Our closed form method is
compared to libcpab numeric
solution implementation [3]
which is based on [4]

▶ Speed tests: x18 / x260 and
x10 / x30 improvement on CPU
/ GPU over current solutions
for forward and backward
operations respectively. Solve ODE Gradient
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Figure 4. Computation time (ms) for the forward and backward
operations on CPU (left) and GPU (right).

Results: Time Series Classification

▶ Diffeomorphic Temporal Transformer Network for time series alignment and classification
▶ Data: UCR time-series classification archive, includes 85 real-world datasets [2]
▶ Benchmark: Nearest Centroid Classifier (NCC). Compared with Euclidean averaging, DTW
Barycenter Averaging (DBA) [6], SoftDTW [1], DTAN [7] and ResNet-TW [5]
▶ Results show significant improvement in terms of efficiency and accuracy
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Figure 5. Temporal transformer architecture. Bottom: time series y is aligned by applying
sequence of transformers T θ that minimize the empirical variance of warped signals. Middle:
Transformed data is sampled based on diffeomorphic flow ϕ obtained via integration of velocity
function v. Top: parameters θ are computed by the localization network based on y(k).
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Figure 6. Correct classification rates
using NCC on UCR archive [2]. Radius
denotes the number of datasets in which
each method achieved top accuracy.

NP Cells Training
Time

NCC
Accuracy

4 → 16 ▲ 1.5% ▲ 0.69%
16 → 32 ▲ 1.8% ▼ 0.09%
32 → 64 ▲ 5.5% ▼ 0.20%
64→ 128 ▲ 16.3% ▼ 0.24%
128→256 ▲ 25.0% ▼ 0.48%

Table 1. Impact of higher expressive
CPA functions on training time and NCC

Summary

▶ A novel closed-form expression for the gradient of CPA-based 1D diffeomorphic
transformations, providing efficiency, speed and precision.

▶ DIFW : optimized implementation of 1D diffeomorphic transformations (CPU & GPU).
▶ Diffeomorphic temporal transformer network resembling [7] for time-series alignment.
▶ Experiments on 85 datasets from UCR archive [2] show significant improvements both

in terms of efficiency and accuracy.
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Figure 7. Multi-class time series alignment. Top: heatmap of
each time series sample (row). Bottom: overlapping time
series, red line represents Euclidean average. Left: original
signals. Right: after alignment.
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